See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Teorema fundamental del cálculo integral - Wikipedia, la enciclopedia libre

Teorema fundamental del cálculo integral

De Wikipedia, la enciclopedia libre

El teorema fundamental del cálculo integral consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo.

Una consecuencia directa de este teorema, denominada en ocasiones segundo teorema fundamental del cálculo, permite calcular la integral de una función utilizando la antiderivada de la función a ser integrada.

Aunque los antiguos matemáticos griegos como Arquímedes ya contaban con métodos aproximados para el cálculo de volúmenes, áreas y longitudes curvas, fue gracias a una idea originalmente desarrollada por el matemático inglés Isaac Barrow y los aportes de Isaac Newton y Gottfried Leibniz que este teorema pudo ser enunciado y demostrado.

Tabla de contenidos

[editar] Los teoremas fundamentales del cálculo integral

Dada una función f integrable sobre el intervalo [a,b], definimos F sobre [a,b] por F(x) = {\int_{\alpha}^x f(t)dt} con \alpha \in [a,b] fijo. El teorema dice que si f es continua en c \in [a,b], entonces F es derivable en c y F'(c) = f(c).

[editar] Demostración

Lema importante

Sea f integrable sobre [a,b] y

m \leq f(x) \leq M \forall  x \in [a,b]

Entonces

m(b-a) \leq {\int_a^b f(t)dt} \leq M(b-a)

Demostración

Hipótesis:

Sea c \in [a,b].
Sea f función integrable sobre el intervalo [a,b] y continua en c.
Sea F una función sobre [a,b] definida así: F(x)= \int_{\alpha}^x f(t)dt con \alpha \in [a,b]

Tesis:

F'(c)=f(c)

Por definición se tiene que F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} }.

Sea h>0. Entonces F(c+h)-F(c)={\int_c^{c+h} f(t)dt}.

Se define mh y Mh como:

m_h = \inf\{f(x)| c\leq x \leq c+h\},
M_h = \sup\{f(x)| c\leq x \leq c+h\}

Aplicando el 'lema' se observa que

m_h \cdot h \leq {\int_c^{c+h} f(t)dt} \leq M_h \cdot h.

Por lo tanto,

m_h \leq \frac{F(c+h)-F(c)}{h} \leq M_h

Sea h < 0. Sean

{m^*}_h = \inf \{ f(x)|c+h \leq x \leq c \},
{M^*}_h = \sup \{ f(x)|c+h \leq x \leq c \}.

Aplicando el 'lema' se observa que

{m^*}_h \cdot (-h) \leq {\int_{c+h}^c f(t)dt } \leq {M^*}_h \cdot (-h) .

Como

F(c+h)-F(c)={\int_c^{c+h} f(t)dt} = -{\int_{c+h}^{c} f(t)dt},

entonces

{m^*}_h \cdot h \geq F(c+h)-F(c) \geq {M^*}_h \cdot h.

Puesto que h < 0, se tiene que

{m^*}_h \leq \frac{F(c+h)-F(c)}{h} \leq {M^*}_h.

Y como f es continua en c se tiene que

\lim_{h \rightarrow 0} m_h = \lim_{h \rightarrow 0} M_h = \lim_{h \rightarrow 0} {m^*}_h = \lim_{h \rightarrow 0} {M^*}_h = f(c),

y esto lleva a que

F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} } = f(c).

[editar] Ejemplos

F(x) = \int_{0}^{x} t^2 dt \Rightarrow F'(x) = x^2
H(x) = \int_{10}^{e^{3x}} sen(t) dt \Rightarrow H'(x) = sen(e^{3x}) e^{3x} 3
G(x) = \int_{0}^{x^2} arcsen(t) dt \Rightarrow G'(x) = arcsen(x^2) 2x

[editar] Segundo teorema fundamental

También se le llama la Regla de Barrow, en honor a Isaac Barrow.

Dada una función f continua en el intervalo [a,b] y sea g cualquier función primitiva de f, es decir g'(x)=f(x) para todo x \in [a,b], entonces:

\int_{a}^{b} f(x) dx = g(b) - g(a)

Este teorema se usa frecuentemente para evaluar integrales definidas.

[editar] Demostración

Hipótesis:

Sea f una función continua en el intervalo [a,b]
Sea g una función diferenciable en el intervalo [a,b] tal que g'(x)=f(x) {\  }\forall x \in [a,b]

Tesis:

\int_a^b f(x)dx = g(b)-g(a)

Demostración:

Sea

F(x)= \int_a^x f(t)dt .

Tenemos por el primer teorema fundamental del cálculo que:

F'(x)=f(x)=g'(x) {\   } \forall x \in [a,b].

Por lo tanto,

\exists c \in \mathbb{R} {\  } tal que \forall x \in [a,b], F(x)=g(x) + c.

Observamos que

0 = F(a) = g(a) + c

y de eso se sigue que c = − g(a); por lo tanto,

F(x) = g(x) − g(a).

Y en particular si x = b tenemos que:

\int_a^b f(t)dt = F(b) = g(b) - g(a)

C.L.QQ.Q.D.

[editar] Ejemplos

\int_0^{\pi} \cos(x)dx = \sin(\pi)-\sin(0)=0

\int_1^e \frac{dx}{x} = \ln(e)-\ln(1)=1

como se puede integrar inmediatamente

[editar] Véase también

[editar] Enlaces externos


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -