Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Stone-Weierstrass theorem - Wikipedia, the free encyclopedia

Stone-Weierstrass theorem

From Wikipedia, the free encyclopedia

In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on an interval [a,b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are the simplest functions, and computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885.

Marshall H. Stone considerably generalized the theorem (Stone 1937) and simplified the proof (Stone 1948). His result is known as the Stone–Weierstrass theorem. The Stone–Weierstrass theorem generalizes the Weierstrass approximation theorem in two directions: instead of the real interval [a,b], an arbitrary compact Hausdorff space X is considered, and instead of the algebra of polynomial functions, approximation with elements from more general subalgebras of C(X) is investigated. The Stone-Weierstrass theorem is a vital result in the study of the algebra of continuous functions on a compact Hausdorff space.

Further, there is a generalization of the Stone–Weierstrass theorem to noncompact Tychonoff spaces, namely, any continuous function on a Tychonoff space is approximated uniformly on compact sets by algebras of the type appearing in the Stone–Weierstrass theorem and described below.

Contents

[edit] Weierstrass approximation theorem

The statement of the approximation theorem as originally discovered by Weierstrass is as follows:

Suppose f is a continuous complex-valued function defined on the real interval [a,b]. For every ε>0, there exists a polynomial function p over C such that for all x in [a,b], we have |f(x) - p(x)| < ε, or equivalently, the supremum norm ||f - p|| < ε.
If f is real-valued, the polynomial function can be taken over R.

A constructive proof of this theorem for f real-valued using Bernstein polynomials is outlined on that page.

[edit] Applications

As a consequence of the Weierstrass approximation theorem, one can show that the space C[a,b] is separable: the polynomial functions are dense, and each polynomial function can be uniformly approximated by one with rational coefficients; there are only countably many polynomials with rational coefficients. Since C[a,b] is Hausdorff and separable it follows that C[a,b] has cardinality equal to  2^{\aleph_0} - the same cardinality as the cardinality of the reals.

[edit] Stone–Weierstrass theorem, real version

The set C[a,b] of continuous real-valued functions on [a,b], together with the supremum norm ||f|| = supx ∈[a,b] |f(x)|, is a Banach algebra, (i.e. an associative algebra and a Banach space such that ||fg|| ≤ ||f|| ||g|| for all f, g). The set of all polynomial functions forms a subalgebra of C[a,b] (i.e. a vector subspace of C[a,b] that is closed under multiplication of functions), and the content of the Weierstrass approximation theorem is that this subalgebra is dense in C[a,b].

Stone starts with an arbitrary compact Hausdorff space X and considers the algebra C(X,R) of real-valued continuous functions on X, with the topology of uniform convergence. He wants to find subalgebras of C(X,R) which are dense. It turns out that the crucial property that a subalgebra must satisfy is that it separates points: A set A of functions defined on X is said to separate points if, for every two different points x and y in X there exists a function p in A with p(x) not equal to p(y).

The statement of Stone–Weierstrass is:

Suppose X is a compact Hausdorff space and A is a subalgebra of C(X,R) which contains a non-zero constant function. Then A is dense in C(X,R) if and only if it separates points.

This implies Weierstrass' original statement since the polynomials on [a,b] form a subalgebra of C[a,b] which which contains the constants and separates points.

[edit] Locally compact version

A version of the Stone-Weierstrass theorem is also true when X is only locally compact. Let C0(X,R) be the space of real-valued continuous functions on X which vanish at infinity; that is, a continuous function f is in C0(X,R) if, for every ε > 0, there exists a compact set K ⊂ X such that f < ε on X\K. A subalgebra A of C0(X, R) is said to vanish nowhere if not all of the elements of A simultaneously vanish at a point; that is, for every x in X, there is some f in A such that f(x) ≠ 0. The theorem generalizes as follows:

Suppose X is a locally compact Hausdorff space and A is a subalgebra of C0(X,R). Then A is dense in C0(X, R) if and only if it separates points and vanishes nowhere.

This version clearly implies the previous version in the case when X is compact, since in that case C0(X,R) = C(X,R).

[edit] Applications

The Stone–Weierstrass theorem can be used to prove the following two statements which go beyond Weierstrass's result.

  • If f is a continuous real-valued function defined on the set [a,b] x [c,d] and ε>0, then there exists a polynomial function p in two variables such that |f(x,y) - p(x,y)| < ε for all x in [a,b] and y in [c,d].
  • If X and Y are two compact Hausdorff spaces and f : XxY -> R is a continuous function, then for every ε>0 there exist n>0 and continuous functions f1, f2, ..., fn on X and continuous functions g1, g2, ..., gn on Y such that ||f - ∑figi|| < ε.

[edit] Stone–Weierstrass theorem, complex version

Slightly more general is the following theorem, where we consider the algebra C(X,C) of complex-valued continuous functions on the compact space X, again with the topology of uniform convergence. This is a C*-algebra with the *-operation given by pointwise complex conjugation.

Let X be a compact Hausdorff space and let S be a subset of C(X,C) which separates points. Then the complex unital *-algebra generated by S is dense in C(X,C).

The complex unital *-algebra generated by S consists of all those functions that can be obtained from the elements of S by throwing in the constant function 1 and adding them, multiplying them, conjugating them, or multiplying them with complex scalars, and repeating finitely many times.

This theorem implies the real version, because if a sequence of complex-valued functions uniformly approximate a given function f, then the real parts of those functions uniformly approximate the real part of f. As in the real case, an analog of this theorem is true for locally compact Hausdorff spaces.

[edit] Lattice and boolean ring versions

Let X be a compact Hausdorff space. Stone's original proof of the theorem used the idea of boolean rings C(X,R); that is, a subset B of C(X,R) such that for every f, g in B, the functions f+g and max{f,g} are also in B. The boolean ring version of the Stone–Weierstrass theorem states (Hewitt & Stromberg 1965, Theorem 7.29):

Suppose X is a compact Hausdorff space and B is a family of functions in C(X,R) such that
  1. B separates points.
  2. B contains the constant function 1.
  3. If fB then afB for all constants aR.
  4. B is a boolean ring; that is, if f, gB, then f+gB and max{f,g} ∈ B.
Then B is dense in C(X,R).

A similar version of the theorem applies to lattices in C(X,R). A subset L of C(X,R) is called a lattice if for any two elements f, g in L, the functions max(f,g) and min(f,g) also belong to L. The lattice version of the Stone–Weierstrass theorem states:

Suppose X is a compact Hausdorff space with at least two points and L is a lattice in C(X,R) with the property that for any two distinct elements x and y of X and any two real numbers a and b there exists an element f in L with f(x) = a and f(y) = b. Then L is dense in C(X,R).

The above versions of Stone–Weierstrass can be proven from this version once one realizes that the lattice property can also be formulated using the absolute value |f| which in turn can be approximated by polynomials in f.

More precise information is available:

Suppose X is a compact Hausdorff space with at least two points and L is a lattice in C(X,R). The function φ in C(X,R) belongs to the closure of L iff for each pair of distinct points x and y in X and for each ε > 0 there exists some f in L for which |f(x) - φ(x)| < ε and |f(y) - φ(y)| < ε.

[edit] Bishop's theorem

Another generalization of the Stone-Weirstrass theorem is due to Errett Bishop. Bishop's theorem is as follows (Bishop 1961):

Let A be a closed subalgebra of the Banach space C(X,C) of continuous complex-valued functions on a compact Hausdorff space X. Suppose that fC(X, C) has the following property:
  • f|SAS for every maximal set SX such that AS contains no non-constant real functions.
Then fA.

Glicksberg (1962) gives a short proof of Bishop's theorem using the Krein-Milman theorem in an essential way, as well as the Hahn-Banach theorem. See also Rudin (1973, §5.7).

[edit] See also

  • Runge's phenomenon shows that finding a polynomial P such that f(x)=P(x) for some finely spaced x=x_n is a bad way to attempt to find a polynomial approximating f uniformly. However, as is shown in Rudin's Principles of Mathematical Analysis, one can easily find a polynomial P uniformly approximating f by convolving f with a polynomial kernel.

[edit] References

[edit] Historical works

The historical publication of Weierstrass (in German language) is freely available from the digital online archive of the Berlin Brandenburgische Akademie der Wissenschaften:

  • K. Weierstrass (1885). Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1885 (II).
Erste Mitteilung (part 1) pp. 633–639, Zweite Mitteilung (part 2) pp. 789–805.

Important historical works of Stone include:

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu