ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bernstein polynomial - Wikipedia, the free encyclopedia

Bernstein polynomial

From Wikipedia, the free encyclopedia

Bernstein polynomials approximating a curve
Bernstein polynomials approximating a curve

In the mathematical subfield of numerical analysis, a Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the Bernstein form, that is a linear combination of Bernstein basis polynomials.

A numerically stable way to evaluate polynomials in Bernstein form is de Casteljau's algorithm.

Polynomials in Bernstein form were first used by Bernstein in a constructive proof for the Stone-Weierstrass approximation theorem. With the advent of computer graphics, Bernstein polynomials, restricted to the interval x ∈ [0, 1], became important in the form of Bézier curves.

Contents

[edit] Definition

The n + 1 Bernstein basis polynomials of degree n are defined as

b_{\nu,n}(x) = {n \choose \nu} x^{\nu} (1-x)^{n-\nu}, \qquad \nu=0,\ldots,n.

where {n \choose \nu} is a binomial coefficient.

The Bernstein basis polynomials of degree n form a basis for the vector space Πn of polynomials of degree n.

A linear combination of Bernstein basis polynomials

B(x) = \sum_{\nu=0}^{n} \beta_{\nu} b_{\nu,n}(x)

is called a Bernstein polynomial or polynomial in Bernstein form of degree n. The coefficients βν are called Bernstein coefficients or Bézier coefficients.

[edit] Example

The first few Bernstein basis polynomials are

b_{0,0}(x) = 1 \,
b_{0,1}(x) = 1-x \,
 b_{1,1}(x) = x \,
b_{0,2}(x) = (1-x)^2 \,
b_{1,2}(x) = 2x(1-x) \,
 b_{2,2}(x) = x^2 \ .

[edit] Properties

The Bernstein basis polynomials have the following properties:

  • bν,n(x) = 0, if ν < 0 or ν > n
  • bν,n(0) = δν,0 and bν,n(1) = δν,n where δ is the Kronecker delta function.
  • bν,n(x) has a root with multiplicity ν at point x = 0 (note if ν is 0 there is no root at 0)
  • bν,n(x) has a root with multiplicity n − ν at point x = 1 (note if ν = n there is no root at 1)
  • bν,n(x) ≥ 0 for x in [0,1]
  • bν,n(1 − x) = bn − ν,n(x)
  • The derivative can be written as a combination of two polynomials of lower degree:
b'_{\nu,n}(x) = n\left(b_{\nu-1,n-1}(x) - b_{\nu,n-1}(x)\right)
  • If ν ≠ 0, then bν,n(x) has a unique local maximum on the interval [0,1] at x = ν/n. This maximum takes the value
\nu^{\nu}n^{-n}(n-\nu)^{n-\nu}{n\choose \nu}.
\sum_{\nu=0}^n b_{\nu,n}(x) = \sum_{\nu=0}^n {n \choose \nu} x^{\nu}(1-x)^{n-\nu} = (x+(1-x))^n = 1.
  • A Bernstein polynomial can always be written as a linear combination of polynomials of higher degree.
b_{\nu,n-1}(x)=\frac{n-\nu}{n}b_{\nu,n}(x)+\frac{\nu+1}{n}b_{\nu+1,n}(x).

[edit] Approximating continuous functions

Let f(x) be a continuous function on the interval [0, 1]. Consider the Bernstein polynomial

B_n(f)(x) = \sum_{\nu=0}^{n} f\left(\frac{\nu}{n}\right) b_{\nu,n}(x).

It can be shown that

\lim_{n\rightarrow\infty} B_n(f)(x)=f(x)

uniformly on the interval [0, 1]. This is a stronger statement than the proposition that the limit holds for each value of x separately; that would be pointwise convergence rather than uniform convergence. Specifically, the word uniformly signifies that

\lim_{n\rightarrow\infty} \sup\{\,\left|f(x)-B_n(f)(x)\right|:0\leq x\leq 1\,\}=0.

Bernstein polynomials thus afford one way to prove the Stone-Weierstrass approximation theorem that every real-valued continuous function on a real interval [a,b] can be uniformly approximated by polynomial functions over R.

A more general statement for a function with continuous k-th derivative is

\| B_n(f)^{(k)} \|_\infty \le {(n)_k \over n^k} \| f^{(k)} \|_\infty and \|f^{(k)}- B_n(f)^{(k)} \|_\infty \rightarrow 0,

where additionally {(n)_k \over n^k}= \left(1-{0 \over n}\right)\left(1-{1 \over n}\right) \cdots \left(1-{k-1 \over n}\right) is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.

[edit] Proof

Suppose K is a random variable distributed as the number of successes in n independent Bernoulli trials with probability x of success on each trial; in other words, K has a binomial distribution with parameters n and x. Then we have the expected value E(K/n) = x.

Then the weak law of large numbers of probability theory tells us that

\lim_{n\to\infty}P\left(\left|\frac{K}{n}-x\right|>\delta\right)=0

for every δ > 0.

Because f, being continuous on a closed bounded interval, must be uniformly continuous on that interval, we can infer a statement of the form

\lim_{n\rightarrow\infty} P\left(\left|f(K/n)-f(x)\right|>\varepsilon\right)=0.

Consequently

\lim_{n\rightarrow\infty}
P\left(\left|f(K/n)-E(f(K/n))\right|+\left|E(f(K/n))-f(x)\right|>\varepsilon\right)=0.
\lim_{n\rightarrow\infty}
P\left(\left|f\left(\frac{K}{n}\right)-E\left(f\left(\frac{K}{n}\right)\right)\right|>\varepsilon/2\right)+P\left(
\left|E\left(f\left(\frac{K}{n}\right)\right)-f(x)\right|>\varepsilon/2\right)=0.

And so the second probability above approaches 0 as n grows. But the second probability is either 0 or 1, since the only thing that is random is K, and that appears within the scope of the expectation operator E. Finally, observe that E(f(K/n)) is just the Bernstein polynomial Bn(f,x).

[edit] See also

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -