ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Heine–Cantor theorem - Wikipedia, the free encyclopedia

Heine–Cantor theorem

From Wikipedia, the free encyclopedia

In mathematics, the Heine–Cantor theorem, named after Eduard Heine and Georg Cantor, states that if M is a compact metric space, then every continuous function

f : M → N,

where N is a metric space, is uniformly continuous.

For instance, if f : [a,b] → R is a continuous function, then it is uniformly continuous.

This is not Cantor's theorem.

[edit] Proof

Suppose that f is continuous on a compact metric space M but not uniformly continuous, then the negation of

\forall \varepsilon > 0 \quad \exists \delta > 0 such that  d(x,y) < \delta \Rightarrow \rho (f(x) , f(y) ) < \varepsilon for all x, y in M

is:

\exists \varepsilon_0 > 0 such that \forall \delta > 0 , \  \exists x, y \in M such that \ d(x,y) < \delta and  \rho (f(x) , f(y) ) \ge \varepsilon_0.

where d and ρ are the distance functions on metric spaces M and N, respectively.

Choose two sequences xn and yn such that

 d(x_n, y_n) < \frac {1}{n} and  \rho ( f (x_n), f (y_n)) \ge \varepsilon_0.

As the metric space is compact there exist two converging subsequences (x_{n_k} to x0 and y_{n_k} to y0), so

d(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \Rightarrow \rho ( f (x_{n_k}), f (y_{n_k})) \ge \varepsilon_0

but as f is continuous and x_{n_k} and y_{n_k} converge to the same point, this statement is impossible.

[edit] See also

[edit] External links

This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -