ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Feynman-Kac formula - Wikipedia, the free encyclopedia

Feynman-Kac formula

From Wikipedia, the free encyclopedia

The Feynman-Kac formula, named after Richard Feynman and Mark Kac, establishes a link between partial differential equations (PDEs) and stochastic processes. It offers a method of solving certain PDEs by simulating random paths of a stochastic process. Conversely, stochastic PDEs can be solved by deterministic methods.

Suppose we are given the PDE

\frac{\partial f}{\partial t} + \mu(x,t) \frac{\partial f}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 f}{\partial x^2} = 0

subject to the terminal condition

\ f(x,T)=\psi(x)

where \mu,\ \sigma,\ \psi are known functions, \ T is a parameter and \ f is the unknown. This is known as the (one-dimensional) Kolmogorov backward equation. Then the Feynman-Kac formula tells us that the solution can be written as an expectation:

\ f(x,t) = E[ \psi(X_T) | X_t=x ]

where \ X is an Itō process driven by the equation

dX = \mu(X,t)\,dt + \sigma(X,t)\,dW,

where \ W(t) is a Wiener process (also called Brownian motion) and the initial condition for \ X(t) is \ X(0) = x. This expectation can then be approximated using Monte Carlo or quasi-Monte Carlo methods.

Contents

[edit] Proof

Applying Itō's lemma to the unknown function \ f one gets

df=\left(\mu(x,t)\frac{\partial f}{\partial x}+\frac{\partial f}{\partial t}+\frac{1}{2}\sigma^2(x,t)\frac{\partial^2 f}{\partial x^2}\right)\,dt+\sigma(x,t)\frac{\partial f}{\partial x}\,dW.

The first term in parentheses is the above PDE and is zero by hypothesis. Integrating both sides one gets

\int_t^T df=f(X_T,T)-f(x,t)=\int_t^T\sigma(x,t)\frac{\partial f}{\partial x}\,dW.

Reorganising and taking the expectation of both sides:

f(x,t)=\textrm{E}\left[f(X_T,T)\right]-\textrm{E}\left[\int_t^T\sigma(x,t)\frac{\partial f}{\partial x}\,dW\right].

Since the expectation of an Itō integral with respect to a Wiener process \ W is zero, one gets the desired result:

f(x,t)=\textrm{E}\left[f(X_T,T)\right]=\textrm{E}\left[\psi(X_T)\right]=\textrm{E}\left[\psi(X_T)|X_t=x\right].

[edit] Remarks

When originally published by Kac in 1949[1], the Feynman-Kac formula was presented as a formula for determining the distribution of certain Wiener functionals. Suppose we wish to find the expected value of the function

 e^{-\int_0^t V(x(\tau))\, d\tau}

in the case where \ x(\tau) is some realization of a diffusion process starting at \ x(0) = 0. The Feynman-Kac formula says that this expectation is equivalent to the integral of a solution to a diffusion equation. Specifically, under the conditions that \ u V(x) \geq 0,

 E\left( e^{- u \int_0^t V(x(\tau))\, d\tau} \right) = \int_{-\infty}^{\infty} w(x,t)\, dx

where \ w(x,0) = \delta(x) and


\frac{\partial w}{\partial t} = \frac{1}{2} \frac{\partial^2 w}{\partial x^2} - u V(x) w.

The Feynman-Kac formula can also be interpreted as a method for evaluating functional integrals of a certain form. If

 I = \int f(x(0)) e^{-u\int_0^t V(x(t))\, dt} g(x(t))\, Dx

where the integral is taken over all random walks, then

 I = \int w(x,t) g(x)\, dx

where \ w(x,t) is a solution to the parabolic partial differential equation

 \frac{\partial w}{\partial t} = \frac{1}{2} \frac{\partial^2 w}{\partial x^2} - u V(x) w

with initial condition \ w(x,0) = f(x).

[edit] See also

[edit] References

  • Simon, Barry (1979). Functional Integration and Quantum Physics. Academic Press. 
  1. ^ Kac, Mark (1949). "On Distributions of Certain Wiener Functionals". Transactions of the American Mathematical Society 65 (1): 1-13. 


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -