ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Dominated convergence theorem - Wikipedia, the free encyclopedia

Dominated convergence theorem

From Wikipedia, the free encyclopedia

In measure theory, a branch of mathematical analysis, Lebesgue's dominated convergence theorem provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and pointwise convergence for a sequence of functions. This theorem shows the superiority of the Lebesgue integral over the Riemann integral for many theoretical purposes.

Contents

[edit] Statement of the theorem

Let f1, f2, f3, ... denote a sequence of real-valued measurable functions on a measure space (S,Σ,μ). Assume that the sequence converges pointwise and is dominated by some integrable function g. Then the pointwise limit is an integrable function and


\int_S\lim_{n\to\infty} f_n\,d\mu=\lim_{n\to\infty}\int_S f_n\,d\mu.

To say that the sequence is "dominated" by g means that


|f_n(x)| \le g(x)

for all natural numbers n and all points x in S. By integrable we mean

\int_S|g|\,d\mu<\infty.

The convergence of the sequence and domination by g can be relaxed to hold only μ-almost everywhere.

[edit] Proof of the theorem

Lebesgue's dominated convergence theorem is a special case of the Fatou–Lebesgue theorem. Below is a direct proof, using Fatou's lemma as the essential tool.

If f denotes the pointwise limit of the sequence, then f is also measurable and dominated by g, hence integrable. Furthermore,


|f-f_n|\le 2g

for all n and


\limsup_{n\to\infty}|f-f_n|=0.

By the reverse Fatou lemma,


\limsup_{n\to\infty}\int_S|f-f_n|\,d\mu
\le\int_S\limsup_{n\to\infty}|f-f_n|\,d\mu=0.

Using linearity and monotonicity of the Lebesgue integral,


\biggl|\int_Sf\,d\mu-\int_Sf_n\,d\mu\biggr|
=\biggl|\int_S(f-f_n)\,d\mu\biggr|
\le\int_S|f-f_n|\,d\mu,

and the theorem follows.

[edit] Discussion of the assumptions

That the assumption that the sequence is dominated by some integrable g can not be dispensed with may be seen as follows: define fn(x) = n for x in the interval (0,1/n] and fn(x) = 0 otherwise. Any g which dominates the sequence must also dominate the pointwise supremum h = supn fn. Observe that


\int_0^1 h(x)\,dx
\ge\int_{1/m}^1 h(x)\,dx
=\sum_{n=1}^{m-1}\int_{\left(\frac1{n+1},\frac1n\right]}n\,dx
=\sum_{n=1}^{m-1}\frac1{n+1}
\to\infty\quad\text{as }m\to\infty

by the divergence of the harmonic series. Hence, the monotonicity of the Lebesgue integral tells us that there exists no integrable function which dominates the sequence on [0,1]. A direct calculation shows that integration and pointwise limit do not commute for this sequence:


\int_0^1\lim_{n\to\infty} f_n(x)\,dx
=0\neq 1=\lim_{n\to\infty}\int_0^1 f_n(x)\,dx,

because the pointwise limit of the sequence is the zero function.

[edit] Extensions

The theorem applies also to measurable functions with values in a Banach space, with the dominating function still being non-negative and integrable as above.

[edit] See also

[edit] References

  • R.G. Bartle, "The Elements of Integration and Lebesgue Measure", Wiley Interscience, 1995.
  • H.L. Royden, "Real Analysis", Prentice Hall, 1988.
  • D. Williams, "Probability with Martingales", Cambridge University Press, 1991, ISBN 0-521-40605-6


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -