See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Ηλεκτρομαγνητική επαγωγή - Βικιπαίδεια

Ηλεκτρομαγνητική επαγωγή

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Ηλεκτρομαγνητισμός
Ηλεκτρισμός · Μαγνητισμός
Ηλεκτροστατική
Ηλεκτρικό φορτίο
Νόμος του Κουλόμπ
Ηλεκτρικό πεδίο
Νόμος του Γκάους
Ηλεκτρικό δυναμικό
Ηλεκτρική διπολική ροπή
Μαγνητοστατική
Νόμος του Αμπέρ
Μαγνητικό πεδίο
Μαγνητική ροή
Νόμος των Μπιο-Σαβάρ
Μαγνητική διπολική ροπή
Ηλεκτροδυναμική
Ηλεκτρικό ρεύμα
Νόμος της δύναμης Λόρεντζ
Ηλεκτροκινητήρια δύναμη
Ηλεκτρομαγνητική επαγωγή
Νόμος των Φαραντέι-Λενζ
Ρεύμα μετατόπισης
Εξισώσεις Μάξουελ
Ηλεκτρομαγνητικό πεδίο
Ηλεκτρομαγνητική ακτινοβολία
Ηλεκτρικό δίκτυο
Ηλεκτρική αγωγιμότητα
Ηλεκτρική αντίσταση
Χωρητικότητα
Αυτεπαγωγή
Εμπέδηση
Κοιλότητες συντονισμού
Κυματοδηγοί
Τανυστές στη Σχετικότητα
Τανυστής ηλεκτρομαγνητικού πεδίου
Τανυστής πίεσης-ενέργειας
Αυτό το άρθρο αφορά το φαινόμενο της ηλεκτρομαγνητικής επαγωγής στη Φυσική. Για την επαγωγή σε άλλους γνωστικούς τομείς, βλέπε επαγωγή.

Ηλεκτρομαγνητική επαγωγή (ή απλώς ηλεκτρική επαγωγή) (Electric Induction) ονομάζεται η εμφάνιση ηλεκτρισμού εξαιτίας μαγνητικού πεδίου. Συγκεκριμένα είναι το φαινόμενο της ανάπτυξης διαφοράς δυναμικού στα άκρα ενός αγωγού, η οποία λαμβάνει χώρα όταν μεταβάλλεται η μαγνητική ροή που διέρχεται από την επιφάνεια που ο συγκεκριμένος αγωγός ορίζει.

Η ανακάλυψη του φαινομένου αποδίδεται στον Άγγλο φυσικό Μάικλ Φαραντέι(*) (Michael Faraday), με πιθανότερη ημερομηνία πρώτης παρατήρησης την 29η Αυγούστου 1831.

[Επεξεργασία] Περιγραφή

Σύμφωνα με τον ορισμό της, η μαγνητική ροή που διέρχεται από μία επιφάνεια μπορεί να μεταβληθεί με δύο τρόπους. Πρώτον, αυτό μπορεί να γίνει αν μεταβληθεί η ένταση του μαγνητικού πεδίου εντός του οποίου βρίσκεται η επιφάνεια. Δεύτερον, σε ένα μη μεταβαλλόμενο μαγνητικό πεδίο η μαγνητική ροή που διέρχεται από την επιφάνεια μπορεί να μεταβληθεί αν αλλάξει ο προσανατολισμός της επιφάνειας σε σχέση με τις δυναμικές γραμμές του μαγνητικού πεδίου.

Αντίστοιχα, εντοπίζονται δύο δυνατότητες προκειμένου να παρατηρηθεί το φαινόμενο της ηλεκτρομαγνητικής επαγωγής: Είτε μεταβάλλοντας την ένταση του μαγνητικού πεδίου στα σημεία της επιφάνειας που ορίζει ο αγωγός, είτε μετακινώντας τον αγωγό εντός του μαγνητικού πεδίου. Σε κάθε περίπτωση, στα άκρα του αγωγού αναπτύσσεται διαφορά δυναμικού στην οποία έχει, λόγω της προέλευσής της, αποδοθεί η ονομασία επαγωγική τάση ή τάση από επαγωγή.

Στην περίπτωση που τα άκρα του αγωγού είναι συνδεδεμένα με αγώγιμο υλικό, οπότε δημιουργείται κλειστό ηλεκτρικό κύκλωμα, το φαινόμενο της ηλεκτρομαγνητικής επαγωγής εκφράζεται με την ανάπτυξη ηλεκτρεγερτικής δύναμης (ΗΕΔ) στο κύκλωμα. Σύμφωνα με το νόμο της επαγωγής (ή νόμο του Φαραντέι), η ηλεκτρεγερτική δύναμη είναι ανάλογη του ρυθμού μεταβολής της μαγνητικής ροής:

 \mathcal{E} = - {{d\Phi} \over dt} ,

όπου

\mathcal{E} είναι η ηλεκτρεγερτική δύναμη, εκφρασμένη σε volt, και
Φ είναι η μαγνητική ροή, εκφρασμένη σε Weber

Στην ειδική, αλλά όχι τόσο σπάνια, περίπτωση που το φαινόμενο εξελίσσεται σε πηνίο, ο νόμος της επαγωγής έχει τη μορφή

 \mathcal{E} = - N{{d\Phi} \over dt}

όπου

\mathcal{E} είναι η ηλεκτρεγερτική δύναμη, εκφρασμένη σε volt,
Φ είναι η μαγνητική ροή που διέρχεται από μία σπείρα του πηνίου, εκφρασμένη σε Weber και
N είναι ο αριθμός των σπειρών του πηνίου

Και στις δύο περιπτώσεις, το αρνητικό πρόσημο (-) στη μαθηματική έκφραση του νόμου της επαγωγής δικαιολογείται από τον κανόνα του Λεντς


(*)΄Σημείωση: Ο επιστήμονας αυτός παρατήρησε ότι όταν αγωγός τέμνει ή τέμνεται από μαγνητικές γραμμές ενός μαγνητικού πεδίου (με κίνησή του εντός του πεδίου περί τον αγωγό ή και με μεταβολή του μαγνητικού πεδίου πέριξ του αγωγού) αναπτύσσεται τάσις στα άκρα του εν λόγω αγωγού το μέγεθος της οποίας είναι ανάλογο:

  1. της έντασης του μαγνητικού πεδίου,
  2. της ταχύτητας με την οποία τέμνονται από τον αγωγό οι μαγνητικές γραμμές (ταχύτητα μεταβολής του μαγνητικού πεδίου),
  3. του μήκους του αγωγού που τέμνει τις μαγνητικές γραμμές και
  4. της γωνίας τομής των μαγνητικών γραμμών (ακριβέστερα του ημιτόνου της γωνίας).
  • Επι τη βάσει των παραπάνω αναπτύχθηκαν οι Ηλεκτρογεννήτριες


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -