See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Zariski-Topologie – Wikipedia

Zariski-Topologie

aus Wikipedia, der freien Enzyklopädie

Die Zariski-Topologie ist ein Begriff aus dem mathematischen Teilgebiet der algebraischen Geometrie. Sie ist die natürliche Topologie auf den Studienobjekten der algebraischen Geometrie, den algebraischen Varietäten oder allgemeiner den Schemata.

Inhaltsverzeichnis

[Bearbeiten] Die Zariski-Topologie in der klassischen algebraischen Geometrie

In der klassischen algebraischen Geometrie ist die Zariski-Topologie (nach Oscar Zariski) diejenige Topologie auf dem affinen Raum kn über einem algebraisch abgeschlossenen Körper k, die von den offenen Mengen der Form

\mathrm D(f)=\{x\in k^n\mid f(x)\not=0\} für f\in k[X_1,\ldots,X_n]

erzeugt wird. Affine Varietäten tragen die induzierte Topologie, und die Zariski-Topologie auf allgemeineren Varietäten wird über affine Karten definiert.

Beispielsweise ist die Zariski-Topologie auf der affinen Geraden die Topologie der koendlichen Mengen.

Auf einer affinen Varietät ist die Zariski-Topologie die gröbste Topologie, für die die regulären Funktionen als Abbildungen in die affine Gerade k (mit ihrer Zariski-Topologie) stetig sind.

[Bearbeiten] Die Zariski-Topologie auf dem Spektrum eines Ringes

Ist A ein kommutativer Ring mit Einselement, so ist das Spektrum \mathrm{Spec}\,A die Menge der Primideale von A mit der Topologie, bei der die abgeschlossenen Mengen die Mengen

\{\mathfrak p\in\mathrm{Spec}\,A\mid\mathfrak p\supseteq I\}

für Ideale I\subseteq A sind.

Ist A=k[X_1,\ldots,X_n] für einen algebraisch abgeschlossenen Körper k so entsprechen die maximalen Ideale von A nach dem Hilbertschen Nullstellensatz eineindeutig den Elementen von kn, und die Topologien auf diesen beiden Mengen stimmen überein.

[Bearbeiten] Eigenschaften

Die Zariski-Topologie unterscheidet sich stark von den gewohnten, auf den reellen Zahlen basierenden topologischen Räumen.

  • Die Topologie ist i.a. nicht hausdorffsch; in der Tat ist der Raum kn irreduzibel, d.h. je zwei nichtleere offene Teilmengen schneiden sich. Irreduzibilität ist also ein stärkerer Begriff als Zusammenhang.
  • Quasi-kompakte Teilmengen müssen nicht notwendigerweise abgeschlossen sein.

[Bearbeiten] Verallgemeinerungen

  • Die Zariski-Topologie eines Schemas ist Teil seiner Struktur; allerdings verwendet man den Ausdruck „Zariski-Topologie“ im Kontext von Schemata meist nur zur Unterscheidung von anderen Grothendieck-Topologien.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -