See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Maximales Ideal – Wikipedia

Maximales Ideal

aus Wikipedia, der freien Enzyklopädie

Maximales Ideal ist ein Begriff aus der Algebra.

[Bearbeiten] Definition

Es sei R ein Ring. Dann heißt ein Ideal \mathfrak{m} \subseteq R maximal, wenn \mathfrak{m} ein maximales Element ist in der durch die (mengentheoretische) Inklusion \subseteq (teilweise) geordneten Menge aller echten Ideale. D.h. \mathfrak{m} \neq R und für jedes Ideal \mathfrak{a} \subseteq R gilt:

Aus \mathfrak{m} \subseteq \mathfrak{a} \neq R folgt \mathfrak{a} = \mathfrak{m}.

In anderen Worten:

Ein Ideal \mathfrak{m} \subsetneq R ist maximal, wenn es nicht echte Teilmenge eines echten (vom ganzen Ring verschiedenen) Ideals von R ist.

[Bearbeiten] Bemerkungen

  • Entsprechendes gilt jeweils für Links- bzw. Rechtsideale.
  • Mit Hilfe des Zornschen Lemmas kann man zeigen, dass jedes echte Ideal in einem Ring mit Einselement 1 in einem maximalen Ideal enthalten ist.
  • Daraus folgt wiederum, dass jedes Element eines Ringes mit 1, das keine Einheit ist, in einem maximalen Ideal enthalten sein muss.
  • Ringe können mehrere maximale Ideale enthalten. Ein (noetherscher) Ring, der nur ein einziges maximales Links- oder Rechtsideal besitzt, wird als lokaler Ring bezeichnet.
  • Sei \mathfrak{m} ein Ideal des kommutativen Ringes R mit 1. Der Faktorring L = R/\mathfrak{m} ist genau dann ein Körper, wenn \mathfrak{m} maximal ist. Insbesondere heißt dies: Das Bild eines Ringhomomorphismus ist genau dann ein Körper, wenn dessen Kern maximal ist.
  • Ein maximales (zweiseitiges) Ideal \mathfrak{m}\subseteq R eines Ringes R ist genau dann prim, wenn RR \nsubseteq \mathfrak{m}. Insbesondere ist \mathfrak{m} prim, falls R ein Einselement enthält.

[Bearbeiten] Beispiele

\mathrm{ev}_0\colon C(\mathbb R) \rightarrow \mathbb{R},\quad f \mapsto f(0).
Mit anderen Worten: diejenige Abbildung die jede Funktion an der Stelle 0 auswertet. Das Bild von ev0 ist \mathbb{R}, also ein Körper. Somit ist der Kern, also die Menge aller Funktionen mit f(0) = 0, ein maximales Ideal.
Andere Sprachen


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -