See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Zahlkörpersieb – Wikipedia

Zahlkörpersieb

aus Wikipedia, der freien Enzyklopädie

Das Zahlkörpersieb (Number Field Sieve) ist ein Begriff aus dem mathematischen Teilgebiet der Zahlentheorie. Es ist einer der schnellsten bekannten Algorithmen zur Faktorisierung großer Zahlen.

Das Zahlkörpersieb wird vor allem für Zahlen mit über 100 Stellen benutzt, die durch andere Verfahren nicht zerlegt werden konnten. Typischerweise werden dabei mehrere 100 Rechner parallel betrieben.

Inhaltsverzeichnis

[Bearbeiten] Entstehungsgeschichte

Am 31. August 1988 schrieb John M. Pollard einen Brief an A. M. Odlyzko mit Kopien an R. P. Brent, J. Brillhart, H. W. Lenstra, C. P. Schnorr und H. Suyama, worin er ein neues Faktorisierungsverfahren für ganz spezielle Zahlen beschrieb. In diesem Brief illustrierte er dieses Verfahren an der Fermat-Zahl F7 und vermutete, dass damit die bis dato noch nicht faktorisierte Zahl F9 möglicherweise ein Kandidat für dieses Verfahren ist. Pollard benutzte aber noch kein Siebverfahren im algebraischen Zahlkörper.

In den Folgejahren wurde diese Idee u.a. von A. K. Lenstra, H. W. Lenstra, M. S. Manasse und J. M. Pollard ausgebaut. Daraus entstand das spezielle Zahlkörpersieb (wie das Verfahren heutzutage bezeichnet wird, um es vom allgemeinen Zahlkörpersieb unterscheiden zu können). Das spezielle Zahlkörpersieb lässt sich nur für Zahlen der Form bm-r mit b, r klein und m groß anwenden.

Das allgemeine Zahlkörpersieb wurde annähernd zeitgleich zum speziellen Zahlkörpersieb von J. P. Buhler, H. W. Lenstra und Carl Pomerance gefunden. Dieses ist für beliebige Zahlen anwendbar, dafür muss man aber Einbußen bei der Geschwindigkeit hinnehmen.

1992 gelang mit Hilfe des speziellen Zahlkörpersiebs die Faktorisierung von F9.

Bereits 1991 publizierte J. M. Pollard eine Variante des Zahlkörpersiebs, bei der ein zweidimensionales Sieb benutzt wird, welches er als Gittersieb bezeichnet.

Mit dieser Gittersiebvariante, kombiniert mit anderen Methoden, wurde von 2003 bis 2005 die bislang größte aus zwei großen Primfaktoren zusammengesetzte Zahl ohne spezielle Struktur faktorisiert. Dabei handelt es sich um RSA-200, eine 200-stellige Dezimalzahl.[1]

[Bearbeiten] Asymptotische Laufzeit

Die asymptotische Laufzeit des Zahlkörpersiebs konnte bislang nicht exakt bewiesen werden. Unter einigen, als wahrscheinlich geltenden Annahmen, kann man diese jedoch zu

e^{(C+o(1))(n)^\frac13(\log n)^\frac23}

berechnen. n bezeichnet hierbei die Bitlänge der Zahl. Dabei ist die Konstante C davon abhängig, ob das spezielle oder das allgemeine Zahlkörpersieb benutzt wird:

  • Spezielles Zahlkörpersieb: C=(32/9)1/3
  • Allgemeines Zahlkörpersieb: C=(64/9)1/3

[Bearbeiten] Quellen

  1. Meldung der Faktorisierung von RSA-200

[Bearbeiten] Literatur

  • Carl Pomerance: A Tale of Two Sieves, Notices of the AMS, 43 (1996) 1473-1485 (Webversion: http://www.ams.org/notices/199612/pomerance.pdf )
  • A. K. Lenstra & H. W. Lenstra, Jr.: The development of the number field sieve, Lecture Notes in Mathematics, V. 1554, 1993

[Bearbeiten] Weblinks

Wikibooks
 Wikibooks: Das Zahlkörpersieb – Lern- und Lehrmaterialien


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -