See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Givens-Rotation – Wikipedia

Givens-Rotation

aus Wikipedia, der freien Enzyklopädie

In der linearen Algebra ist eine Givens-Rotation (benannt nach Wallace Givens) eine Drehung in einer Ebene, die durch zwei Koordinaten-Achsen aufgespannt wird. Manchmal wird dies auch als Jacobi-Rotation (nach Carl Gustav Jacobi) bezeichnet.

[Bearbeiten] Beschreibung

Die Transformation lässt sich durch eine Matrix der Form

G(i, k, \theta) = 
       \begin{bmatrix}   1   & \cdots &    0   & \cdots &    0   & \cdots &    0   \\
                      \vdots & \ddots & \vdots &        & \vdots &        & \vdots \\
                         0   & \cdots &    c   & \cdots &    s   & \cdots &    0   \\
                      \vdots &        & \vdots & \ddots & \vdots &        & \vdots \\
                         0   & \cdots &   -s   & \cdots &    c   & \cdots &    0   \\
                      \vdots &        & \vdots &        & \vdots & \ddots & \vdots \\
                         0   & \cdots &    0   & \cdots &    0   & \cdots &    1
       \end{bmatrix}

beschreiben, wobei c = cos(θ) und s = sin(θ) in der i-ten und k-ten Zeile und Spalte erscheinen. Eine solche Matrix heißt Givens-Matrix. Formaler ausgedrückt:

G(i, k, \theta)_{j, l} = \begin{cases} \cos\theta & \mbox{ falls } j = i, l = i \mbox{ oder } j = k, l = k \\
                                                      \sin\theta & \mbox{ falls } j = i, l = k \\
                                                     -\sin\theta & \mbox{ falls } j = k, l = i \\
                                                      1          & \mbox{ falls } j = l \\
                                                      0          & \mbox{ sonst. }
       \end{cases}

Das Produkt GT(i,k,θ)x stellt eine Drehung des Vektors x um einen Winkel θ in der (i,k)-Ebene dar, diese wird Givens-Rotation genannt.

Die Hauptanwendung der Givens-Rotation liegt in der numerischen linearen Algebra, um Nulleinträge in Vektoren und Matrizen einzuführen. Dieser Effekt kann z.B. bei der Berechnung der QR-Zerlegung einer Matrix ausgenutzt werden. Außerdem werden solche Drehmatrizen beim Jacobi-Verfahren benutzt.

[Bearbeiten] QR-Zerlegung mittels Givens-Rotationen

  • Das Verfahren ist sehr stabil. Pivotisierung ist nicht erforderlich.
  • Flexible Berücksichtigung von schon vorhandenen 0-Einträgen in strukturierten (insbesondere dünnbesetzten) Matrizen.
  • Die Idee besteht darin sukzessiv die Elemente unterhalb der Hauptdiagonalen auf Null zu setzen, indem man die Matrix von links mit Givens-Rotationen multipliziert. Zunächst bearbeitet man die erste Spalte von oben nach unten und dann nacheinander die anderen Spalten ebenfalls von oben nach unten.
  • Man muß also \mathcal{O}(m\,n) Matrixmultiplikationen durchführen. Da sich jeweils pro Multiplikation höchstens 4 Werte verändern, beträgt der Aufwand für eine QR-Zerlegung einer vollbesetzten m x n-Matrix insgesamt \mathcal{O}(m\,n^2). Für dünnbesetzte Matrizen ist der Aufwand allerdings erheblich niedriger.
  • Will man aij = 0 erreichen, so setzt man c = ajj / ρ und s = − aij / ρ, wobei \rho = \sgn(a_{jj})  \sqrt{a_{jj}^2 + a_{ij}^2}.


Beispiel (QR-Zerlegung):

G_{2,4}^T\cdot G_{1,4}^T\cdot
       \begin{bmatrix}   3 & 5\\
                         0 & 2\\
                         0 & 0\\
                         4 & 5
       \end{bmatrix}
=
       \begin{bmatrix}   5 & 7\\
                         0 & \frac{5}{\sqrt{5}}\\
                         0 & 0\\
                         0 & 0
       \end{bmatrix}

mit

G_{1,4}^T = 
       \begin{bmatrix}  \frac{3}{5}  & 0 & 0 & \frac{4}{5} \\
                         0           & 1 & 0 &  0  \\
                         0           & 0 & 1 &  0  \\
                        \frac{-4}{5} & 0 & 0 & \frac{3}{5}
       \end{bmatrix}, G_{2,4}^T = 
       \begin{bmatrix}   1 & 0                  & 0 & 0 \\
                         0 & \frac{2}{\sqrt{5}} & 0 & -\frac{1}{\sqrt{5}}  \\
                         0 & 0                  & 1 & 0  \\
                         0 & \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}}  \\
       \end{bmatrix}

[Bearbeiten] Literatur

  • Gene H. Golub and Charles F. van Loan, Matrix Computations, 2nd edn., The Johns Hopkins University Press, 1989.
Andere Sprachen


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -