We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Absorption (Physik) – Wikipedia

Absorption (Physik)

aus Wikipedia, der freien Enzyklopädie

Dieser Artikel erläutert die Absorption von Wellen in der Physik; für die chemischen Aspekte der Absorption siehe Absorption (Chemie).

Der Begriff Absorption (lat.: absorptio = Aufsaugung) bezeichnet im Allgemeinen das Aufsaugen, das In-sich-Aufnehmen von etwas, und ist nicht zu verwechseln mit der Adsorption.
In der Physik kann es sich um die Absorption (Dissipation) einer Welle in einem dämpfenden Stoff oder Körper handeln (elektromagnetische Wellen, Schallwellen) oder auch um die Absorption von Teilchenströmen (Partikelstrahlen, radioaktive Strahlung) und Stoffströmen (Lösen von Stoffen ineinander).

Wenn Strahlung an einer Oberfläche absorbiert oder reflektiert werden kann, wird die Stärke der Absorption durch einen Materialparameter beschrieben, den Absorptionsgrad α, der in der Regel von einer Vielzahl von Parametern (Temperatur, Wellenlänge) abhängig ist und bei großen Feldstärken nichtlinear werden kann.

Inhaltsverzeichnis

[Bearbeiten] Absorption von Wellen und Teilchenstrahlen

Energieumsatz verschiedener Strahlungssorten als Funktion der Eindringtiefe
Energieumsatz verschiedener Strahlungssorten als Funktion der Eindringtiefe

Bei der Absorption von Wellen in einem absorbierenden, homogenen Material, ist die Wahrscheinlichkeit der Absorption pro Wegeinheit bei niedrigen Energien in jeder Eindringtiefe gleich. Dann gilt ein exponentielles Gesetz, das Bouguer-Lambertsche Gesetz (oft kurz Lambertsches Gesetz genannt, vergleiche aber Lambertsches Kosinusgesetz). Ist I0 der ursprüngliche Strom, beträgt der nach Durchlaufen der Schichtdicke d noch vorhandene Strom I(d):

\frac{I(d)}{I_0} = e ^{-\mu d} = \tau \,

(Herleitung des Gesetzes: siehe Absorptionsgesetz). Dabei ist µ der von den Eigenschaften des absorbierenden Materials und oft auch von der Energie (Quantenenergie, Teilchenart und -geschwindigkeit) der Strahlung abhängige Absorptionskoeffizient. Sein Kehrwert ist die Eindringtiefe. Aus ihm lässt sich die Dicke der Halbwertsschicht berechnen.

Häufig treten jedoch Nebeneffekte auf, die zu ganz anderen Gesetzmäßigkeiten führen, wie im nebenstehenden Bild zu sehen ist. Dafür gibt es unterschiedliche Ursachen:

  • Entstehung von Sekundärelektronen, die im durchstrahlten Material ausgelöst werden.
  • Bei zu hohen Geschwindigkeiten ionisieren Protonen nur schwach.
  • Elektronen besitzen wegen ihrer elektrischen Ladung eine scharf begrenzte maximale Eindringtiefe. Faustregel: pro 2 MeV in Fleisch 1 cm).
  • Hochenergetischen Photonen und Elektronen ist gemeinsam, dass sie ihr Dosismaximum nicht auf der Hautoberfläche, sondern einige Millimeter tiefer abgeben.

[Bearbeiten] Schall

Die Absorption von Schall findet durch Umwandlung der Leistung des Schalles (Luftschall, Körperschall, auch Erdbebenwellen) in thermische Energie in einem dämpfenden Medium oder an Grenzschichten (z. B. zwischen Luft, in der sich der Schall ausbreitet und einer Festkörperoberfläche) statt (Näheres siehe Schalldämpfung). Die Schallabsorption in Luft ist durch verschiedene thermodynamische Vorgänge bedingt.

[Bearbeiten] Elektromagnetische Wellen

[Bearbeiten] Licht

Die Lichtabsorption an Oberflächen ist im Allgemeinen materialabhängig,. In Abhängigkeit der möglichen Bandstruktur können verschiedene Frequenzbereiche des Lichts absorbiert werden, d. h., je nach Farbe ist die Absorption unterschiedlich stark. Die anderen Frequenzanteile werden je nach Material und Einfallswinkel des Lichtes entweder reflektiert oder transmittiert. Wird beispielsweise eine gelb erscheinende Oberfläche mit weißem Licht bestrahlt, wird das grüne und rote Licht reflektiert/transmittiert und blaues Licht absorbiert (vgl. Farbsynthese). Bei der Absorption von Licht wird die aufgenommenen Energie nicht nur in Wärme umgewandelt, sondern kann durch andere Mechanismen wie Fluoreszenz sowie durch Streuung an Aerosolen verloren gehen.

Wie bereits erwähnt ist die Absorption (zum Teil stark) frequenzabhängig. Die Ursache liegt in der Bandstruktur des Material, bei dem Photonen bestimmter Energie Atome oder Moleküle anregen, die Quantenübergänge mit genau dieser Energiedifferenz in der Elektronenhülle oder in ihren Molekülschwingungen (meist bei infrarotem Licht) besitzen. Grenzflächen verursachen eine zusätzliche, von der Brechzahldifferenz, der Einstrahlrichtung und der Polarisation abhängige Reflexion. Bei diffuser Reflexion spricht man in diesem Zusammenhang auch von Remission.

Der Lichtdurchgang durch eine Platte einschließlich Absorption kann direkt aus der komplexen Brechzahl über die Kramers-Kronig-Beziehungen abgeleitet werden. Damit wird die elektromagnetische Wechselwirkung direkt mit einer Materialeigenschaft in Beziehung gesetzt.

Die Menge der auf dem Weg nicht absorbierten oder gestreuten Photonen hängt neben dem frequenzabhängigen Extinktionskoeffizienten auch von Schichtdicke des Materials ab (vgl. Lambert-Beersches Gesetz). Daher ist z. B. der Himmel im Gebirge dunkler und die Sonne heller.

Siehe auch: Absorptionsbande, Absorptionswerte chemischer Substanzen, Extinktion (optische Dichte (ND) = Absorbanz), Lichtleitkabel

[Bearbeiten] Röntgen- und Gammastrahlung

Der totale Absorptionskoeffizient μ von Aluminium (13Al) für Gammastrahlung, als Funktion der Gammaenergie, und die Beiträge der drei einzelnen Prozesse. Der Comptoneffekt überwiegt im ganzen gezeigten Bereich.
Der totale Absorptionskoeffizient μ von Aluminium (13Al) für Gammastrahlung, als Funktion der Gammaenergie, und die Beiträge der drei einzelnen Prozesse. Der Comptoneffekt überwiegt im ganzen gezeigten Bereich.
Der totale Absorptionskoeffizient μ von Blei (82Pb) für Gammastrahlung, als Funktion der Gammaenergie, und die Beiträge der drei einzelnen Prozesse. Der Photoeffekt überwiegt bei kleinen Energien; die Paarbildung beginnt bei 5 MeV zu überwiegen.
Der totale Absorptionskoeffizient μ von Blei (82Pb) für Gammastrahlung, als Funktion der Gammaenergie, und die Beiträge der drei einzelnen Prozesse. Der Photoeffekt überwiegt bei kleinen Energien; die Paarbildung beginnt bei 5 MeV zu überwiegen.

Auch beim Durchgang von Röntgen- und Gammastrahlung durch Materie ist die Wahrscheinlichkeit für Absorption der Dicke d des durchstrahlten Stoffes proportional. Daraus ergibt sich eine exponentielle Abnahme der Intensität mit der Dicke:


I(d) = I_0 \cdot e ^{-\mu d} \,

Hier ist μ = n · σ der Absorptionskoeffizient, gemessen in m−1, n die Zahl der Atome im Material pro m3 und σ der Wirkungsquerschnitt für Absorption. In der Optik (siehe oben) heißt dieses Gesetz das Lambertsche Gesetz. Man kann die Schwächung des Strahls auch durch eine Halbwertsdicke beschreiben; diese ist dem Absorptionskoeffizienten umgekehrt proportional.

Ein Gammaquant kann folgendermaßen absorbiert werden:

  • durch den photoelektrischen Effekt, wobei ein Elektron mit der Energie des Quants freigesetzt wird, verringert um die Ionisationsenergie des betroffenen Atoms.
  • durch den Comptoneffekt, hier gibt das Quant seine Energie teilweise an ein Elektron ab – das gestreute Photon hat eine verringerte Energie, es kann dieses bei genügender Restenergie dann wieder tun.
  • bei Energien von mindestens 1,022 MeV durch Paarbildung in der Nähe eines Atomkerns: es entsteht ein Positron und ein Elektron.

Die Wahrscheinlichkeit bzw. der Wirkungsquerschnitt für jeden dieser Prozesse hängt von der Energie der Photonen und der Ordnungszahl der Materie ab: der photoelektrische Effekt überwiegt für kleine Energien und hohe Ordnungszahl, die Paarbildung für hohe Energien und hohe Ordnungszahl, der Comptoneffekt für mittlere Energien und niedrige Ordnungszahl.

Der Gesamt-Wirkungsquerschnitt für Absorption ist gleich der Summe aus den Einzelquerschnitten für die drei Prozesse:


\sigma = \sigma_\mathrm{Photo} + \sigma_\mathrm{Compton} + \sigma_\mathrm{Paar} \,
.

Die freigesetzten Elektronen aus allen drei Prozessen können ihrerseits bei genügender Energie weiter ionisierend wirken.

Die beschriebene exponentielle Abnahme gilt nur im Idealfall bei einem dünnen Strahl ohne Hineinstreuung von außen; sie gilt nicht für die Absorption durch eine breite Betonwand.

[Bearbeiten] Fernerkundung

In der Fernerkundung bezieht sich der Ausdruck Absorption auf das Aufnehmen von elektromagnetischer Strahlungsenergie durch die Atmosphäre oder die Erdoberfläche. So wird vorübergehend Energie gespeichert und entsprechend dem Planckschen Strahlungsgesetz wieder emittiert. So reemittiert die durch die Sonne erwärmte Erdoberfläche Strahlung im Wellenlängenbereich des mittleren Infrarot (etwa 8 bis 14 µm). Diese Strahlung wird durch Wolken oder Treibhausgase absorbiert und so verzögert in den Weltraum bzw. wieder zur Erde reemittiert. Daher wird es in klaren Nächten kälter als in bedeckten.

LIDAR ist in der Lage, ein Schichtprofil der Konzentration von Spurengasen zu liefern. Hierbei wird mit speziellen Wellenlängen gearbeitet, die die Moleküle der Spurengase selektiv anregen und so absorbiert und reemittiert werden. Auch ein Profil der Windgeschwindigkeit kann gewonnen werden (Dopplerverschiebung rückgestreuter Strahlung).

Farb- bzw. wellenlängenabhängige Absorption der Erdoberfläche hilft, zwischen verschiedenen Bedeckungen zu unterscheiden. Man nutzt den sichtbaren und den infraroten Spektralbereich, um Vegetationsarten und Temperaturen zu bestimmen.

Mit satellitengestütztem Radar kann man Oberflächenprofile gewinnen, aber auch Wellenfrequenz und -höhe bestimmen.

[Bearbeiten] Funkwellen

Funkwellen zur Nachrichtenübertragung oder beim Radar werden in der Atmosphäre durch freie Ladungsträger (Ionisierung) sowie Regen und Schnee bzw. Hagel absorbiert, reflektiert und gestreut.
So breiten sich Mittelwellen tagsüber schlecht aus (Ionisierung der unteren Atmosphäre durch Sonnenstrahlung), nachts dagegen gut. Funkwellen großer Wellenlänge (Mittel- und Kurzwelle) werden unter flachem Winkel an der Unterseite der Ionosphäre reflektiert; Kurzwellen gelangen so um die gesamte Erde.
Während die Absorption von Mikrowellen an Niederschlag bei der Nachrichtenübertragung oft große Probleme bereitet (Richtfunk, Up- und Downlinks der Satellitenkommunikation), ist man mit Niederschlagsradar (bodengestützt) bzw Wetterradar an Bord von Schiffen und Flugzeugen in der Lage, Niederschlagsgebiete und sogar deren Tropfen- bzw. Hagelkorngröße sowie die Windgeschwindigkeit zu bestimmen. Hier ist die Rayleighstreuung maßgeblich - je geringer die Wellenlänge, desto stärker streuen Partikel mit Abmessungen wesentlich unterhalb der Wellenlänge. Die Windgeschwindigkeit wird anhand der Dopplerverschiebung der rückgestreuten Wellen bestimmt.

Bei Sonnenstürmen kann es zum Erliegen des Funkverkehrs kommen, wenn die Atmosphäre bis in niedrige Schichten ionisiert wird und Funkwellen absorbiert.

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks

Wiktionary
 Wiktionary: Absorption – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik
Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com