See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Производная функции — Википедия

Производная функции

Материал из Википедии — свободной энциклопедии

Произво́дная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой. Процесс вычисления производной называется дифференци́рованием.

Содержание

[править] Определение

Пусть в некоторой окрестности точки x_0 \in \R определена функция f:U(x_0) \subset \R \to \R. Производной функции f в точке x0 называется предел, если он существует,

\lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.

Общепринятые обозначения производной функции y = f(x) в точке x0:

f'(x_0) = f'_x(x_0)=\mathrm{D}f(x_0) = \frac{df(x_0)}{dx} = \left.\frac{dy}{dx}\right\vert_{x = x_0} = \dot{y}(x_0).

Заметим, что последнее обычно обозначает производную по времени (в теоретической механике).

[править] Дифференцируемость

Производная f'(x0) функции f в точке x0, будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция f является дифференцируемой в точке x0 тогда и только тогда, когда её производная в этой точке существует и конечна:

\bigl( f \in \mathcal{D}(x_0) \bigr) \Leftrightarrow \bigl( \exists f'(x_0) \in (-\infty;\infty)\bigr).

Для дифференцируемой в x0 функции f в окрестности U(x0) справедливо представление

f(x) = f(x0) + f'(x0)(xx0) + o(xx0) при x \to x_0.

[править] Замечания

  • Назовём Δx = xx0 приращением аргумента функции, а Δy = f(x0 + Δx) − f(x0) приращением значения функции в точке x0. Тогда
    f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.
  • Пусть функция f:(a,b) \to \R имеет конечную производную в каждой точке x_0 \in (a,b). Тогда определена произво́дная фу́нкция
    f':(a,b) \to \R.
  • Функция, имеющая конечную производную в точке, непрерывна в ней. Обратно, вообще говоря, неверно.
  • Если производная функция сама является непрерывной, то функцию f называют непреры́вно дифференци́руемой и пишут: f \in C^{(1)}\bigl((a,b)\bigr).

[править] Геометрический и физический смысл производной

[править] Тангенс угла наклона касательной прямой

Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло серая линия C). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло серая линия C). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Основная статья: Касательная прямая

Если функция f:U(x_0) \to \R имеет конечную производную в точке x0, то в окрестности U(x0) её можно приблизить линейной функцией

fl(x) = f(x0) + f'(x0)(xx0).

Функция fl называется касательной к f в точке x0. Число f'(x0) является угловым коэффициентом или тангенсом угла наклона касательной прямой.

[править] Скорость изменения функции

Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.

Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).

[править] Производные высших порядков

Понятие производной произвольного порядка задаётся рекуррентно. Полагаем

f^{(0)}(x_0) \equiv f(x_0).

Если функция f дифференцируема в x0, то производная первого порядка определяется соотношением

f^{(1)}(x_0) \equiv f'(x_0).

Пусть теперь производная n-го порядка f(n) определена в некоторой окрестности точки x0 и дифференцируема. Тогда

f^{(n+1)}(x_0) = \left(f^{(n)}\right)'(x_0).

Производные высших порядков обозначаются символами:

f^{(n)}(x_0) = \mathrm{D}^nf(x_0) = \frac{d^nf(x_0)}{dx^n}.

Когда n мало, используются штрихи, римские цифры или точки:

f^{(1)}(x_0) = f'(x_0) = f^I(x) = \dot{f}(x_0),
f^{(2)}(x_0) = f''(x_0) = f^{II}(x) = \ddot{f}(x_0),
f(3)(x0) = f'''(x0) = fIII(x), и т. д.

[править] Примеры

  • Пусть f(x) = x2. Тогда
f'(x_0) = \lim\limits_{x \to x_0}\frac{x^2 - x_0^2}{x-x_0} = \lim\limits_{x \to x_0}(x+x_0) = 2x_0.
  • Пусть f(x) = | x | . Тогда если x_0 \neq 0, то
f'(x0) = sgnx0,

где sgn обозначает функцию знака. Если x0 = 0, то f'_+(x_0) = 1,\; f'_-(x_0) = -1, а следовательно f'(x0) не существует.

[править] Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя их определения производной, можно вывести правила дифференцирования, облегчающие эту работу.

  • ~(f+g)'=f'+g'
  • \left(fg\right)'=f'g+fg' (отсюда, в частности, следует, что производная произведения функции и константы равна произведению производной этой функции на константу)
  • \left(\frac{f}{g}\right)'=\frac{f' g-fg'}{g^2}
  • \frac{d}{dx}f(g(x))=\frac{df(g)}{dg}\cdot \frac{dg(x)}{dx}=f'_g g'_x

Следующие свойства производной служат дополнением к правилам дифференцирования:

  • если функция дифференцируема на интервале ~(a,b), то она непрерывна на интервале ~(a,b);
  • если функция имеет локальный максимум/минимум при значении аргумента, равном ~x, то ~f'(x)=0 (это так называемая лемма Ферма);
  • производная данной функции единственна, но у нескольких разных функций могут быть одинаковые производные.

[править] См. также

[править] Литература

[править] Ссылки

Онлайн калькулятор производных


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -