ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Eksponen - Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia

Eksponen

Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.

Eksponen adalah perkalian yang diulang-ulang. Orang menulis eksponen dengan indeks di atas, yang akan terlihat sebagai berikut: xy. Terkadang hal itu tak mungkin. Kemudian orang menulis eksponen menggunakan tanda ^: 2^3 berarti 23.

Bilangan x disebut bilangan pokoq, dan bilangan y disebut eksponen. Sebagai contoh, pada 23, 2 adalah bilangan pokoq dan 3 eksponen.

Untuk menghitung 23 seseorang harus mengalikan 3 kali terhadap angka 2. Sehingga 2^3=2 \cdot 2 \cdot 2. Hasilnya adalah 2 \cdot 2 \cdot 2=8. Apa yang dikatakan persamaan bisa juga dikatakan dengan cara ini: 2 pangkat 3 sama dengan 8.

Contoh:

  • 5^3=5\cdot{} 5\cdot{} 5=125
  • x^2=x\cdot{} x
  • 1x = 1 untuk setiap bilangan x

Jika eksponen sama dengan 2, maka disebut persegi karena area persegi dihitung menggunakan a2. Sehingga

x2 adalah persegi dari x

Jika eksponen sama dengan 3, maka disebut kubik karena volume kubus dihitung dengan a3. Sehingga

x3 adalah kubik x

Jika eksponen sama dengan -1 orang harus menghitung inversi bilangan pokoq. Sehingga:x^{-1}=\frac{1}{x} Jika eksponen adalah integral dan kurang dari 0, orang harus membalik bilangan dan menghitung pangkat. Sebagai contoh:

2^{-3}=(\frac{1}{2})^3=\frac{1}{8}

Jika eksponen sama dengan \frac{1}{2} hasilnya adalah akar persegi bilangan pokoq. Sehingga x^{\frac{1}{2}}=\sqrt{x}. Contoh:

4^{\frac{1}{2}}=\sqrt{4}=2

Dengan cara yang sama, jika eksponen \frac{1}{n} hasilnya adalah akar ke-n, sehingga:

a^{\frac{1}{n}}=\sqrt[n]{a}

Jika eksponen merupakan bilangan rasional \frac{p}{q}, hasilnya adalah akar ke-q bilangan pokoq yang dipangkatkan p, sehingga:

a^{\frac{p}{q}}=\sqrt[q]{a^p}

Eksponen bisa juga tak rasional. Untuk menjadikan bilangan pokoq a menjadi pangkat ke-x yang tak rasional, kita menggunakan rangkaian ketidakterhinggaan bilangan rasional (xi), yang limitnya adalah x:

x=\lim_{n\to\infty}x_n

seperti ini:a^x=\lim_{n\to\infty}a^{x_n}

Ada beberapa aturan yang membantu menghitung pangkat:

  • \left(a\cdot b\right)^n = a^n\cdot{}b^n
  • \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n},\quad b\neq 0
  • a^r \cdot{} a^s = a^{r+s}
  • \frac{a^r}{a^s} = a^{r-s},\quad a\neq 0
  • a^{-n} = \frac{1}{a^n},\quad a\neq 0
  • \left(a^r\right)^s = a^{r\cdot s}
  • a^0 = 1,\quad a\neq 0: Bila bilangan pokoq lebih besar daripada 1 dan eksponen 0, jawabannya 1. Jika bilangan pokoq dan pangkat sama dengan 0, jawabannya tak terdefinisikan.

Ekponen matriks bisa pula dihitung. Matriks itu harus persegi. Sebagai contoh: I^2=I \cdot I=I.



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -