ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Tranzisztor - Wikipédia

Tranzisztor

A Wikipédiából, a szabad enciklopédiából.

A tranzisztor egy félvezető, amely többek között felhasználható erősítésre, kapcsolásra, feszültség stabilizációra és jelmodulációra. Általában szabályozó szelepként használják fel, amely a bemenő feszültsége alapján szabályozza a rajta átfolyó áram erősségét. Transzisztorokat gyártanak különálló alkatrészként és integrált áramkörök alkotóelemeiként.

Az első tranzisztor
Az első tranzisztor

Tartalomjegyzék

[szerkesztés] Felépítése

Három, egymást felváltva követő, különböző típusú vezetési tartomány-ból áll. Az NPN-tranzisztor esetén két N-típusú tartomány között egy vékony P-típusú réteg van, PNP-tranzisztor esetén pedig két P-típusú réteg közé kerül egy vékony N-típusú tartomány. A félvezető rétegek két egymással szembefordított p-n átmenetet alkotnak (mint két dióda). Minden réteg ki van vezetve egy lábra. A két szélső réteget kollektor-nak (C), illetve emitter-nek (E) nevezik, a középső réteget bázis-nak (B) hívják. A bázis jóval vékonyabb, mint a másik két réteg. A tranzisztor három rétege a félvezető kristálynak csak a felső vékony rétegét foglalja el. A kristály alsó része mechanikusan tartja a rétegeket.

[szerkesztés] Működése

A tranzisztor működése a p–n-átmenet réteg hatásán alapul. Ha a bázison keresztül nem folyik áram, akkor a tranzisztor kollektora és az emittere között sem folyik áram. Amennyiben a bázison áram folyik át, akkor az áram mértékével arányosan folyik áram a kollektor és az emitter között is. Mivel a bázisáram jóval kisebb, mint a kollektor–emitter áram, a tranzisztor erősítőként üzemel. Az áramerősítés mértéke akár több százszoros is lehet. Három félvezető réteg két egymással szembefordított p–n átmenetet alkot.

[szerkesztés] A tranzisztor felfedezése

A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három kutató (Walter Brattain, John Bardeen, William Shockley) 1934 óta kísérletezett különféle anyagokkal, amelyek kutatása során két olyan anyagot találtak, amelyek félvezető tulajdonságot mutattak. Ez a két anyag a germánium és a szilícium volt. Az első megépített tranzisztort germánium és aranylemez összepréseléséből hozta létre Walter Brattain 1947. december 16-án. Ez az első tranzisztort kísérletképpen egy korabeli csöves erősítő egyik elektroncsövének helyébe építették be, amelyet elsőként a vezetőség öt tagja előtt mutatták be, akik megbizonyosodhattak az új alkatrész működőképességéről. Az új eszközt 1948. június 17-én szabadalmaztatták. A tranzisztor nevet a távközlési részleg vezetője, John Pierce adta az alkatrésznek. A tranzisztor felfedezése kezdetben nem vert fel nagy port, lassan ment át a köztudatba, de végül is alapjaiban átalakította az elektronikai ipart. Walter Brattain és John Bardeen munkásságát később elismerték, és 1956-ban Nobel-díjat kaptak a találmányukért.

[szerkesztés] Tranzisztor és az elektronika fejlődése

Az 1950-es évekig aktív erősítő alkatrészként csak az elektroncsövek (vákuumcső) használata volt lehetséges. A csövek hátránya volt a nagy méretük és a katódfűtés miatti nagy fogyasztásuk. A megbízhatóságuk is gyenge volt. A legrégebbi elektronikus számítógépek, amelyek szoba méretűek voltak, több ezer csövet tartalmaztak. A csöveket szinte folyamatosan cserélni kellett bennük, emiatt egy hosszadalmas számítást szinte lehetetlen volt velük elvégeztetni. A tranzisztor megjelenése gyorsan kiszorította az elavult csöveket. Hatására a számítógépek megbízhatósága rohamosan javult, és az áramszükségletük is a töredéke lett a korábbiaknak. A tranzisztor a tömeges elterjedését a szórakoztató elektronikának köszönhette. A mindenki számára elérhető rádiót hatalmas mennyiségben gyártották. Ezek korábban a fakávába épített elektroncsöves elektronika méretei miatt kisebb bútor nagyságúak voltak. Amikor a tranzisztor felváltotta a csöveket, a méretek kezdetben egy női táska nagyságúra csökkentek, és továbbra is zsugorodtak. Így jöttek létre a táska-, majd a zsebrádiók. A tranzisztorok által kiváltott méret- és súlycsökkentés több új iparág fejlődését is elősegítette, pl. űrhajózásét.

[szerkesztés] Tranzisztor működése

[szerkesztés] Bipoláris tranzisztor

Tranzisztor kristályának felépítése
Tranzisztor kristályának felépítése

A nevével ellentétben (mivel a félvezető kristály kialakítása teljesen aszimmetrikus), a kollektor és az emitter polaritása nem felcserélhető. A neve onnan ered, hogy a kisebbségi és a többségi töltéshordozók is szerepet játszanak a vezetésben. A PNP tranzisztor emittere mindig pozitív, az NPN tranzisztor emittere mindig negatív tápfeszültséget kap, a tápfeszültség másik sarka a kollektorra van kötve. Egy p–n átmeneten 0,6 V feszültség esik. A bázisra kapcsolt 0,6 V feszültségnél kezd a tranzisztor nyitni.

Tranzisztor kristályában működő diffúziós folyamatok.
Tranzisztor kristályában működő diffúziós folyamatok.

Egy NPN-tranzisztor átmenetei közelében a P-típusú bázisból diffúzióval átjutnak a lyukak az N-típusú emitterbe és kollektorba. Elektronok diffundálnak az emitterből és a kollektorból a bázisba. A bázisban keletkező lyukhiány és elektronfelesleg negatív többlettöltést hoz létre. Pozitív többlettöltés jön létre az emitter és a kollektor határfelületei közelében. A határfelületnél keletkező töltések miatt a bázis egy potenciálgátat képez mind a lyukak, mind az elektronok számára. Ez a bal oldali rajzon mint kiürített réteg jelentkezik, amelyből a töltéshordozók elvándoroltak, így a rétegen keresztül nem folyik áram. A bázis–emitter átmenetre nyitófeszültséget kapcsolva az emitter–bázis átmenetnél a potenciálgát lecsökken, és ez megkönnyíti a lyukaknak a bázisból az emitterbe, az elektronoknak pedig az emitterből a bázisba való jutását. A bázis elektronjai a bázis–kollektor átmenet felé diffundálnak, majd tovább sodródnak a kollektorba.

bipoláris tranzisztor
bipoláris tranzisztor

A bázis–emitter átmenetnél található potenciálgát határozza meg az emitterből a bázisba jutó elektronok számát. A nyitó feszültség hatására a bázisból lyukak diffundálnak az emitterbe, ahol részben rekombinálódnak, részben pedig az emitteren keresztül az emitter kivezetésen át elvezetődnek. Az emitteráram az emitterből a bázison keresztül a kollektor felé áramló kollektoráramnak és a bázisból az emitter felé áramló lyukaktól származó bázisáramnak az összegével egyenlő. A kollektoráram nagysága a kollektor–bázis feszültségtől kevésbé függ. A bázis–emitter feszültségtől az emitteráram nagymértékben függ.

[szerkesztés] Egyéb tranzisztor típusok

[szerkesztés] MOS tranzisztor

MOSFET tranzisztor rajzjelei
MOSFET tranzisztor rajzjelei

A MOS (Metal Oxide Semiconductor) tranzisztor négy kivezetést tartalmaz. Másik elnevezése MOS-FET, ahol a FET (Field Effect Transistor, magyarul: térvezérlésű tranzisztor), a tranzisztor működési elvére utal. A tranzisztor unipoláris jellegű. A modern (mind analóg, mind digitális) integrált áramkörök döntő többsége növekményes MOS tranzisztorokból épül fel.

A töltéshordozók forrása a Source, a töltéseket a Drain nyeli el. A Drain és a Source adalékolása azonos típusú, az alapkristályé (Bulk) ellentétes. A csatornán folyó áramot a kapuelektróda, a Gate vezérli. A Gate elektródát szigetelő (általában sziliciumdioxid) választja el a csatornától. A vezérlőelektródán keresztül gyakorlatilag nem folyik áram, a tranzisztor árama a csatornában folyik. A negyedik az alapkristály kivezetése, amely gyakran össze van kapcsolva a Source-szal.

Kétféle FET létezik. A „növekményes” vagy „önzáró” típus csatornáján csak akkor folyik áram, ha a Gate elektróda feszültséget kap. A „kiüritéses” vagy „önvezető” típus esetén a Gate-re kapcsolt feszültség a csatorna áramát csökkenti.

A növekményes MOS tranzisztorban nincsen csatornaadalékolás. Ezekben az eszközökben a csatornát a Gate-re adott feszültség – a Gate tere hozza létre az inverzió jelensége révén. Egy n-csatornás növekményes MOS tranzisztorban a Source és a Drain n-típusú, a Bulk p-típusú. Ha a Gate-re pozitív feszültséget kapcsolunk (a Source-hoz képest), akkor a Bulkban lévő lyukakat az taszítani fogja. Ennek hatására egy kiürített réteg alakul ki a gate-oxid alatt. Ha tovább növeljük a feszültséget, akkor a gate alatt elektronok gyűlnek össze, hiszen azokra vonzó hatással van a gate tere. Ez az összegyűlt töltés az inverziós töltés, amely a csatornát alkotja. Kialakulásával ohmos kapcsolatot létesít a Source és a Drain között, amivel lehetővé válik a vezetés. A tranzisztoron átfolyó áram nagysága ekkor a Drain-Source feszültségtől lineárisan függ – ez jellemző a MOS tranzisztorra a trióda tartományban. Ha a Drain-Source feszültség elegendően nagy, akkor a csatorna a Drain-nél elzáródik (hiszen ott a Gate-Drain feszültség már nem elég nagy ahhoz, hogy a csatornát képző inverziós töltést fenn tudja tartani). Ekkor a tranzisztor telítésbe kerül (szaturáció). Ilyenkor a Drain-Source feszültséget tovább növelve a tranzisztor árama már nem nő tovább (első közelítésben), tehát ekkor egy olyan eszközt kaptunk, aminek árama a rajta eső feszültségtől független – ez az áramforrás. A tranzisztor áramát a Gate-Source feszültséggel állíthatjuk be, amelytől az négyzetesen függ.

A kiürítéses típusú tranzisztorban adalékolással létre van hozva a csatorna, így az már zérus Gate-Source feszültségnél is vezet. Ebben az esetben a Gate terével nem kinyitjuk, hanem elzárjuk a tranzisztort, méghozzá úgy, hogy olyan polaritású feszültéget kapcsolunk az eszközre, hogy az a csatornában lévő töltéseket taszítsa, és így kiürüljön a csatorna.

A szigetelő oxidréteg átütési szilárdsága alacsony, mivel igen vékony a kiképzése, ezért a diszkrét MOS tranzisztort védeni kell az elektrosztatikus feszültségektől, amelyek tönkre tudják tenni az alkatrészt.

[szerkesztés] Tranzisztor paraméterek

A tranzisztorparaméterek a tranzisztor típusára jellemző értékek, katalógus adatok. E jellemzők értékektől függ, hogy az adott tranzisztort milyen célra lehet felhasználni.

  • Maximális kollektor–emitter feszültség (Ucemax) – A tranzisztor kikapcsolt állapotában megengedhető kollektor–emitter feszültség, amelyet károsodás nélkül még elvisel.
  • Áramerősítési tényezo ß˙´ – h21e néven is szokták emlegetni. Az áramerősítési tényező egy szorzószám, amely megmondja, hogy a bázisáram hányszorosa a kollektor és emitter közötti áram.
{h_{\rm 21e}}=\frac{I_{\rm C}}{I_{\rm B}},
  • Maximális kollektor–emitter áram (Ice) – A kollektor és az emitter között megengedhető áram, vagyis a tranzisztor által kapcsolható legnagyobb áram.
  • Veszteségi teljesítmény (Ptot) – A tranzisztoron hővé alakuló teljesítmény maximuma.
  • Az erősítés határfrekvenciái:
    • fß a ß=1 áramerősítéshez tartozó határferkvencia
    • ft tranzithatárfrekvencia

[szerkesztés] A jövő

Az Oregoni Állami Egyetem (OSU) és a Hewlett-Packard 2004-ben bejelentették, hogy az anyagok egy teljesen új csoportját kísérletezték ki közösen, amelyekből olcsó, stabil és környezetbarát tranzisztorok gyárthatóak, melyek ráadásul átlátszóak [1]. A HP kutatólaboratóriumának igazgatója, Tim Weber szerint a felfedezés lehetővé teszi majd, hogy kijelzővé vagy szkennerré alakíthassanak majd bármilyen üvegfelületet, s ezzel „Pár olyan dolog, ami a hollywoodi produkciókban trükkfelvétel volt, hamarosan valósággá válik”.

[szerkesztés] Fényképek


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -