See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Binomischer Lehrsatz – Wikipedia

Binomischer Lehrsatz

aus Wikipedia, der freien Enzyklopädie

Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form

 (x+y)^{n},\quad n\in\mathbb{N}

als Polynom n-ten Grades in den Variablen x und y auszudrücken.

Dieser Satz zählt in seiner allgemeinen Form mit einem reellen oder gar komplexen Exponenten zu den erstaunlichsten mathematischen Theoremen. Auf einer 1999 veröffentlichten Liste der 100 erstaunlichsten mathematischen Sätze[1] ist er auf Platz 44 gelistet.

In der Algebra gibt der binomische Lehrsatz an, wie ein Ausdruck der Form (x + y)n auszumultiplizieren ist.

Inhaltsverzeichnis

[Bearbeiten] Binomischer Lehrsatz für natürliche Exponenten

Für alle Elemente x und y eines kommutativen unitären Rings und für alle natürlichen Zahlen n\in\Bbb N_0 gilt die Gleichung:

 (x+y)^n = \sum_{k=0}^{n}{n \choose k} x^{n-k}y^{k} \quad (1)

Insbesondere gilt dies für reelle oder komplexe Zahlen x und y. (Man beachte dabei 00 = 1.)

Die Koeffizienten dieses Polynomausdrucks sind die Binomialkoeffizienten

 {n \choose k} = \frac {n!}{(n-k)!\cdot k!}  ,

die ihren Namen aufgrund ihres Auftretens im binomischen Lehrsatz erhalten haben. Mit n!=1\cdot 2\cdot\ldots\cdot n ist hierbei die Fakultät von n bezeichnet.

[Bearbeiten] Bemerkung

Die Terme {n\choose k} x^{n-k}y^k sind dabei als Skalarmultiplikation der ganzen Zahl {n\choose k} an das Ringelement xnkyk aufzufassen, d. h. hier wird der Ring in seiner Eigenschaft als \Z-Modul benutzt.

[Bearbeiten] Spezialisierung

Der binomische Lehrsatz für den Fall n = 2 heißt erste Binomische Formel.

[Bearbeiten] Verallgemeinerungen

  • Der binomische Lehrsatz gilt auch in beliebigen unitären Ringen, sofern nur x und y miteinander kommutieren, d.h. x\cdot y = y\cdot x gilt.
  • Auch die Existenz der Eins im Ring ist verzichtbar, sofern man den Lehrsatz in folgende Form umschreibt:
(x+y)^n = x^n + [\sum_{k=1}^{n-1}{n \choose k} x^{n-k}y^{k}] + y^n.

[Bearbeiten] Herleitung

Der Beweis [1] funktioniert durch Induktion über n; für jedes konkrete n kann man diese Formel auch durch Ausmultiplizieren erhalten.

[Bearbeiten] Beispiel

 (x+y)^3={3 \choose 0} x^{3} + {3 \choose 1} x^{2}y + {3 \choose 2} xy^{2} + {3 \choose 3} y^{3}=x^3+3x^2y+3xy^2+y^3


 (x-y)^3={3 \choose 0} x^{3} + {3 \choose 1} x^{2}(-y) + {3 \choose 2} x(-y)^{2} + {3 \choose 3}(-y)^{3}=x^3-3x^2y+3xy^2-y^3

[Bearbeiten] Binomische Reihe, Lehrsatz für komplexe Exponenten

Eine Verallgemeinerung des Theorems auf beliebige reelle Exponenten α mittels unendlicher Reihen ist Isaac Newton zu verdanken. Dieselbe Aussage ist aber auch gültig, wenn α eine beliebige komplexe Zahl ist.

Der binomische Lehrsatz lautet in seiner allgemeinen Form:

 (x+y)^{\alpha}=\sum_{k=0}^{\infty}{\alpha \choose k}x^{k}y^{\alpha - k} \quad (2).

Diese Reihe konvergiert für alle  x,y\in\mathbb{C} mit | x / y | < 1.

Im Spezialfall  \alpha\in\mathbb{N} geht Gleichung (2) in (1) über und ist dann sogar für alle  x,y\in\mathbb{C} gültig, da die Reihe dann abbricht.

Die hier gebrauchten verallgemeinerten Binomialkoeffizienten sind definiert als

 {\alpha \choose k} = \frac{\alpha (\alpha - 1)(\alpha - 2) \cdots (\alpha - k + 1)}{k!} .

Im Fall k = 0 entsteht ein leeres Produkt, dessen Wert als 1 definiert ist.

Für α = -1 und y = 1 ergibt sich aus (2) als Sonderfall die geometrische Reihe.

[Bearbeiten] Literatur

[Bearbeiten] Einzelnachweise

  1. The Hundred Greatest Theorems


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -