Samarium
Z Wikipedie, otevřené encyklopedie
Samarium | |
Atomové číslo | 62 |
Relativní atomová hmotnost | 150,36(2) amu |
Elektronová konfigurace | [Xe] 4f6 6s2 |
Skupenství | Pevné |
Teplota tání | 1072 °C, (1345 K) |
Teplota varu | 1794 °C, (2067 K) |
Elektronegativita (Pauling) | 1,17 |
Hustota | 7,52 g/cm3 |
Hustota při teplotě tání | 7,16 g/cm3 |
Registrační číslo CAS | 7440-19-9 |
Vzhled | |
Atomový poloměr | 1,85 Å (185 pm) |
Výparné teplo | 165 kJ/mol |
Skupenské teplo tání | 8,62 kJ/mol |
Tepelná kapacita | 29,54 J.mol-1.K-1 (25 °C) |
Ionisační energie Pm→Pm+ | 544,5 kJ/mol |
Ionisační energie Pm+→Pm2+ | 1070 kJ/mol |
Ionisační energie Pm2+→Pm3+ | 2260 kJ/mol |
Samarium, chemická značka Sm, (lat. Samarium) je měkký stříbřitě bílý, přechodný kovový prvek, šestý člen skupiny lanthanoidů. Hlavní uplatnění nalézá ve výrobě mimořádně silných permanentních magnetů a slouží také k výrobě speciálních skel a keramiky .
Obsah |
[editovat] Základní fyzikálně-chemické vlastnosti
Samarium je stříbřitě bílý, měkký přechodný kov.
Chemicky je samarium méně reaktivní než předchozí prvky ze skupina lanthanoidů. Na vzduch je relativně stálé a ke vzplanutí dochází až při teplotě nad 150 °C. S vodou reaguje samarium za vzniku plynného vodíku, snadno se rozpouští v běžných minerálních kyselinách. Ve sloučeninách se vyskytuje prakticky pouze v mocenství Sm+3.
Chemické vlastnosti jeho solí jsou značně podobné sloučeninám hliníku a ostatních lanthanoidů. Všechny tyto prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Další nerozpustnou sloučeninou je šťavelan, který je možno použít ke gravimetrickému stanovení těchto prvků po jejich vzájemné separaci.
[editovat] Historie objevu
Roku 1853 objevil švýcarský chemik Jean Charles Galissard de Marignac neznámé emisní linie ve spektru didymia a přiřadil je doposud neobjevenému prvku z řady lanthanoidů.
Izolaci čistého prvku provedl teprve roku 1879 francouzský chemik Paul Émile Lecoq de Boisbaudran. Vycházel přitom z minerálu samarskitu o složení ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16). Prvek byl poté pojmenován podle tohoto minerálu, který nesl jméno ruského důlního specialisty, plukovníka Samarského.
[editovat] Výskyt a výroba
Samarium je v zemské kůře obsaženo v koncentraci asi 6 mg/kg, o jeho obsahu v mořské vodě údaje chybí. Ve vesmíru připadá jeden atom samaria na 100 miliard atomů vodíku.
V přírodě se samarium vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4 a xenotim, chemicky fosforečnany lanthanoidů a dále bastnäsity ]](Ce, La, Y)CO3F– směsné flourouhličitany prvků vzácných zemin. Pro samarium je typický již výše uvedený minerál samarskit ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16).
Velká ložiska těchto rud se nalézají ve Skandinávii, USA, Číně a Vietnamu. Významným zdrojem jsou i fosfátové suroviny - apatity z poloostrova Kola v Rusku
Při průmyslové výrobě prvků vzácných se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.
Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.
Příprava čistého kovu se obvykle provádí elektrolýzou směsi roztavených chloridů samaritého SmCl3, vápenatého CaCl2 a sodného NaCl. V některých postupech se využívá i redukce oxidu samaritého Sm2O3 elementárním lanthanem.
- Sm2O3 + 2 La → 2 Sm + La2O3
[editovat] Použití a sloučeniny
Malá množství samaria jsou obsažena v didymu, směsi praseodymu a neodymu, požívané pro odkysličování tavenin kovů díky vysoké afinitě lanthanoidů ke kyslíku.
Ve sklářském průmyslu slouží přídavky samaria do skloviny ke zvýšení absorpce skla pro světlo v infračervené oblasti spektra.
Při výrobě optických laserů a maserů se často uplatňují samariem dopované krystaly fluoridu vápenatého CaF2.
Katalyzátory na bázi oxidu samaria se v chemickém průmyslu používají pro dehydrataci a dehydrogenaci ethanolu.
V jaderné energetice se slitiny s obsahem samaria uplatňují pro zachycování neutronů.
Obloukové lampy, sloužící především jako světelné zdroje při natáčení filmů používají elektrody ze slitin s obsahem samaria.
[editovat] Permanentní magnety
Přestože v současné době jsou nejsilnějšími známými permanentní magnety materiály na bázi neodymu o složení Nd2Fe14B, jsou magnety složené z samaria a kobaltu stále prakticky nejvíce vyráběnými extrémně silnými permanentními magnety.
Složení těchto magnetů je obvykle uváděno jako SmCo5, ale v literatuře se uvádí i materiál Sm2Co17, který by měl mít ještě lepší magnetické vlastnosti. Hlavní předností Sm-Co magnetů je jejich použitelnost v širokém oboru teplot, prakticky jsou bez problémů účinné i za teplot kolem 300 °C, Curieův bod leží až v oblasti 700 – 800 °C.
Praktická výroba těchto magnetů započala v 70. letech 20. století. V současné době jsou tyto magnety prakticky používány v počítačové technice v záznamových hlavách harddisků nebo při výrobě malých mikrofonů a reproduktorů ve sluchátkách a mnoha dalších aplikacích.
Nevýhody a rizika:
- Výrobní cena samariových magnetů je vyšší než u neodymových a to jak pro vyšší cenu samaria i kobaltu ve srovnání s neodymem a železem.
- Materiál těchto magnetů je poměrně křehký a mohou se snadno rozbít nejen mechanickým úderem, ale i při náhlém vystavení silnému magnetickému poli.
- Jejich vysoká magnetická síla může způsobit vymazání dat na záznamových mediích počítačů (disketa, CD), ale i na bankovních kartách nebo počítačových monitorech.
- Přitažlivá síla je tak vysoká, že při náhlém přiblížení magnetu k ferromagnetickému materiálu dokáže způsobit citlivá poranění pokožky nebo svalové tkáně, pokud stojí v mezi magnetem a přitahovaným předmětem.
[editovat] Literatura
- Greenwood N.N., Earnshaw A.: Chemie prvků II. 1. vyd. 1993. ISBN 80-85427-38-9
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
H | (přehled) | He | |||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo |
*Lanthanoidy | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
**Aktinoidy | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | ||
|
|||||||||||||||||
Skupiny prvků: Kovy - Nekovy - Polokovy - Blok s - Blok p - Blok d - Blok f | |||||||||||||||||
|