கார்ல் ஃப்ரெடெரிக் காஸ்
கட்டற்ற கலைக்களஞ்சியமான விக்கிபீடியாவில் இருந்து.
கார்ல் ஃப்ரெடெரிக் காஸ் ( கேட்க; Johann Carl Friedrich Gauss, இலத்தீன்: Carolus Fridericus Gauss, ஏப்ரல் 30, 1777 – பெப்ரவரி 23 1855) கணித உலகத்திலேயே எல்லாக் காலத்திய கணித இயலர்களுக்கும் மேல்படியில் வைக்கப்படும் சிறந்த கணித வல்லுனர். அவர் கணிதம், இயற்பியல், வானியல்,புவிப்பரப்பு ஆகிய நான்கு துறைகளிலும் கணிசமாகப் பங்களித்தவர். கணிதத்தில், எண் கோட்பாடு, பகுவியல், வகையீட்டு வடிவியல் ஆகிய மூன்றிலும் பற்பல விதங்களில் அடிக்கல் நாட்டி அவர் காலத்திலேயே கோபுரம் எழுப்பினவர். கணிப்புகளில் அபார வல்லமை பொருந்தியவராக இருந்ததால், வானியல், புவிப் பரப்பு, எண் கோட்பாடு இம்மூன்றிலும் இன்றியமையாத நீண்ட கணிப்புகளைச் செய்து சாதனை புரிந்தவர்.
பொருளடக்கம் |
[தொகு] சிறு வயதிலேயே கணித மேதை
தந்தை கெப்பார்ட் ஒரு சாதாரண ஏழைத்தொழிலாளி. தாய் டொரொத்தியா கெப்பார்டுக்கு இரண்டாம் மனைவியாகும் முன் வீடுகள்தோறும் சுத்தம் செய்யும் வேலையில் ஈடுபட்டிருந்தவர். மூன்று வயதிலேயெ காஸ் தன் தந்தை கூலியாட்களுக்கு சம்பளம் தரும்போது அவர் கணிப்பில் தவறு ஒன்றைக் கண்டுபிடித்தவன். ஏழாவது வயதில் ஒரு நாள் வகுப்பில் நுழைந்ததுமே, எல்லா மாணவர்களையும் பேசாமல் இருக்கச் செய்வதற்காக ஆசிரியர் கொடுத்திருந்த ஒரு கணக்கை நொடியில் முடித்து அவரை அசர வைத்தான் சிறுவன் காஸ். 1 இலிருந்து 100 வரையுள்ள முழு எண்களின் கூட்டுத் தொகையைக் கணக்கிடும் கணிப்புதான் அது. காஸுக்கு உடனே தோன்றியது: 1 முதல் 100 வரையில் உள்ள எண்களில் 50 ஜோடிகள் இருக்கின்றன; அதாவது, {1, 100}, {2, 99}, {3, 98}, முதலியவை; ஒவ்வொன்றின் கூட்டுத்தொகை 101. ஆக 50 ஜோடிகளின் கூட்டுத்தொகை 5050. ஆசிரியருக்கு மாணவன்மேல் உவகை பொங்கியது. பையனை பள்ளி நேரங்களுக்கு அப்பால் கணிதத்தின் மற்ற நெளிவு சுளுவுகளையெல்லம் கற்றுத் தருவதற்காக அநுமதி கேட்டு அவன் பெற்றோர்களை அணுகினார். அவர்கள் படிப்பறிவில்லாதவர்களாக இருந்தது கணித உலகின் அதிர்ஷ்டம்; ஏனென்றால் மகனுடைய அபார கணிப்புத் திறமையை ஒரு காட்சிப் பொருளாக ஆக்க நினைத்து, இசைமேதை வோல்ஃப்காங் மொஜார்ட்டின் தந்தை ஊர் ஊராக அவனைக் கூட்டிப்போன மாதிரி அவர்களும் செய்திருக்கலாம்.
பதினொன்றாவது வயதிலிருந்து நான்கு ஆண்டுகளுக்கு தொல்நூல்களில் காஸுக்கு நல்ல கல்வி கிட்டியது. ஆனால் அதைவிட முக்கியமானதாகக் கூறப்படவேண்டியது அவனுக்கு நேருக்கு நேராகவும் தானாகவே படித்தும் கணிதத்தில் கிடைத்த கல்வியைத்தான். நியூட்டனுடைய 'ப்ரின்ஸிபியா' பெர்னொவிலியினுடைய 'ஆர்ஸ் கந்ஜெக்டாண்டி' போன்ற சிறந்த நூல்களை கரைத்துக் குடிக்கும் பேறு கிட்டியது. 15 வயதுக்குள் அவனுடைய கல்வியின் உயர்ந்த தரத்தைப் பார்த்து மெச்சிய பிரன்ஸ்விக் பிரபு (Duke of Brunswick) ஃபெர்டினாண்ட் என்பவர் அவனுக்கு கல்லூரியில் படிக்க உபகாரச் சம்பளம் கொடுத்து உதவினார்.
கல்லூரியில் படித்த மூன்று ஆண்டுகளுக்குள்ளேயே பகா எண்களின் எண்ணிக்கை π(n) க்கு இரண்டு யூகங்கள் அளித்துவிட்டான்:
இதை பிற்பாடு மாற்றி அவன் முன்மொழிந்தது:
-
- .
கணிப்புப் பிரச்சினைகளில் அன்றாடம் முழுகி விளையாடும் இம்மாணவன் தன்னுடையதேயான வாய்பாடுகளைச் சோதிப்பதற்காக π(n) இன் மதிப்புகளை n = 3,000,000 வரையில் சோதித்துவிட்டான்.
[தொகு] பல்கலைக்கழகப்படிப்பு
கெட்டிங்கென் பல்கலைக் கழகத்தில் மூன்றாண்டுகள் படித்தார் காஸ். ஆனால் அவருடைய காலத்திற்குப் பல்லாண்டுகளுக்குப் பிறகு பிரசுரிக்கப்பட்ட அவருடைய குறிப்புப் புத்தகங்களிலிருந்து, கெட்டிங்கெனிலிருந்த கணித ஆசிரியர்களைவிட தொல்லிலக்கியங்கள் பிரிவில் இருந்த ஆசிரியர்களே அவரை ஈர்த்ததாகத் தெரிகிறது. எனினும் ஃபெர்மா பகாதனிகளைப் பற்றியும், ஆய்லர் F5 என்ற ஆறாவது ஃபெர்மா எண் பகா எண்ணல்ல என்று கொடுத்த தீர்வைப் பற்றியும் தெரிந்துகொண்டதும், இதர ஃபெர்மா எண்கள் பகாதனிகளாக இருக்கமுடியாது என்றொரு யூகத்திற்கு வந்தார். இதற்குப் பிறகு தன்னுடைய எதிர்காலம் தொல்லிலக்கியத்திலல்ல, கணிதத்தில் தான் என்றொரு முடிவெடுத்தார். கெட்டிங்கெனில் தனக்கு வழிகாட்ட ஆசிரியர்கள் ஒருவரும் இல்லை என்று தீர்மானித்து தன்னுடைய ஊரான பிரன்ஸ்விக்குக்கே திரும்பிவந்து, முனைவர் பட்டத்திற்காக ஆய்வுக் கட்டுரை எழுதத் தொடங்கினார். அதற்கு அவர் எடுத்துக் கொண்ட பொருள் இயற்கணிதத்தின் அடிப்படைத் தேற்றம். அதாவது:
-
- 'சிக்கலெண் கெழுக்களுடன் n-கிரமமுள்ள ஒவ்வொரு பல்லுறுப்புச் சமன்பாட்டிற்கும் சிக்கலெண் தளத்தில் n தீர்வுகள் இருக்கும்'
என்னும் தேற்றம்.1799இல் இவ்வாய்வுக்கு ஹெம்ஸ்டெட் பல்கலைக்கழகம் அவருக்கு முனைவர் பட்டமளித்தது. அத்தேற்றம் இன்றும் அவருடைய பெயரிலேயே புழங்குகிறது. இன்னும் குறிப்பிடத்தக்க விஷயம் இத்தேற்றத்திற்கு அவரே தன்னுடைய ஆயுளில் இன்னும் மூன்று நிறுவல்கள் கொடுத்தார் என்பது. கடைசி நிறுவல் அவரது 70வது வயதில் கொடுத்தது.
[தொகு] சிக்கலெண் தளம்
சிக்கலெண்களை ஒரு தளத்தின் புள்ளிகளுக்கு ஒத்தவையாக ஆக்கி, ஒவ்வொரு புள்ளி (a,b) ஐயும் a + ib என்ற சிக்கலெண்ணுடைய ஒரு குறிகாட்டி (Representation) என்று தற்காலத்தில் கூறும் முறையில் சிக்கலெண்களின் பெயரிலேயே அனாவசியமாகப் புனையப்பட்டிருக்கும் 'சிக்கல்' என்ற கருத்தை விடுவித்த முதல் கணித இயலர்களில் காஸும் ஒருவர்.
[தொகு] 'எண்கணித உரைகள்'
17 வது வயதிலிருந்தே தன் மனதில் எண்களைப்பற்றித் தோன்றியதையெல்லாம் ஒரு நூலாக வடிக்கவேண்டுமென்ற ஆசை 1798 இல் Disquisitiones arithmeticae என்னும் நூலாக உருவெடுத்து 1801 இல் 24வது வயதில் கணித உலகத்துக்கும் எண்கோட்பாட்டுக்கும் அவர் அளித்த மாபெரும் பொக்கிஷமாக மிளிர்ந்தது. உண்மையில் அதற்கு முன்னால் எண் கோட்பாடு என்ற ஒரு கோட்பாடே இருந்ததாகச் சொல்லமுடியாது. ஏனெனில், கிரேக்க காலத்திலிருந்து அன்றைய வரையில் எண்களைப் பற்றித் தெரிந்ததெல்லாம் தனித்தனியே நின்ற பல தேற்றங்கள் தாம். அவைகளை இணைத்து ஒரு கோட்பாடாக்கக் கூடிய நிலையில் யாரும் -- ஃபெர்மா, ஆய்லர், லக்ராஞ்ஜி, லெஜாண்டர் -- அவைகளைக் கண்டுகொள்ளவில்லை. காஸினுடைய சமானம், மாடுலோ n என்ற கருத்து அவர்களுடைய கருத்துகள் பலவற்றை ஒன்று சேர்த்துப் பார்க்க உதவியது.
[தொகு] இருபடிய நேர் எதிர்மை
காஸினுடைய நூலின் நான்காவது அத்தியாயத்தில், இருபடிய எச்சங்கள் (Quadratic Residues) எடுத்துக்கொள்ளப்படுகின்றன.
- a என்ற எண் p என்ற எண்ணின் இருபடிய எச்சம் என்பதற்கு இலக்கணம்:
- ஏதாவதொரு எண் x க்கு, என்ற சமான உறவு.
- 'a என்ற எண் p என்ற எண்ணின் இருபடிய எச்சம்'
என்பதை வேறுவிதமாக, அதாவது,
- 'மாடுலோ p க்கு, a ஒரு இருபடிய எச்சம்'
என்றும் சொல்வதுண்டு:
எடுத்துக்காட்டாக,
- இனுடைய இருபடிய எச்சம். அல்லது, மாடுலோ 7 க்கு 2 ஒரு இருபடிய எச்சம்.
- இனுடைய இருபடிய எச்சம்.அல்லது, மாடுலோ 5 க்கு 11 ஒரு இருபடிய எச்சம்.
எந்த எண் x க்கும் இருக்கமுடியாவிட்டால், a,p இனுடைய இருபடிய எச்சமல்லாதது (Quadratic non-residue) எனப்பெயர் பெறும்.
லெஜாண்டர் ஏற்கனவே இருபடிய எச்சங்களைப்பற்றிய ஒரு சுவையான விதியைக்கண்டுபிடித்திருந்தார். அது, p,q என்ற இரண்டு பகாதனிகளைப் பொருத்த விஷயம்.அதாவது,அவை ஒன்றுக்கொன்று இருபடிய எச்சங்களா அல்லது இருபடிய எச்சமல்லாதவைகளா என்பதைப் பற்றிய இரு தேற்றங்கள்:
-
- இரட்டைப்படை எண்ணாகுமேயானால்,
-
- p, மாடுலோ q க்கு ஒரு இருபடிய எச்சமாக இருந்தால், இருந்தால்தான், q மாடுலோ p க்கு ஒரு இருபடிய எச்சமாக இருக்கும்.
-
- ஒற்றைப்படை எண்ணாகுமேயானால்,
-
- p மாடுலோ q க்கு ஒரு இருபடிய எச்சமல்லாததாக இருந்தால், இருந்தால்தான், q மாடுலோ p க்கு இருபடிய எச்சமாக இருக்கும்.
இந்த விதிக்குப்பெயர் இருபடிய நேர் எதிர்மை (Law of Quadratic Reciprocity) என்று பெயர். பெயர் வைத்ததே காஸ் தான். பெயர் வைத்ததோடுமட்டுமல்லாமல் இவ்விதிக்கு ஒரு கண்டிப்பான (rigorous) நிறுவல் கொடுத்தவரும் அவரே.
[தொகு] 17-பக்க ஒழுங்குப் பலகோணம் வரைமுறை
கிரேக்கர்கள் காலத்திலிருந்து மட்டக்கோல், கவராயம் இவைகளை மாத்திரம் வைத்துக்கொண்டு ஒழுங்குப் பலகோணம் வரைவதெப்படி என்று ஆய்வுகள் இருந்தவண்ணமே உள்ளன. 3,4,5,6, 8, 10, 15 பக்கங்களுள்ள ஒழுங்குப் பலகோணத்தின் வரைமுறை அவர்களுக்குத் தெரிந்திருந்தது. ஆனால் 7,9,11,13 .... முதலிய பக்கங்களுடைய ஒழுங்குப் பலகோணத்தின் வரையறையைக் கண்டுபிடிக்க முயன்று தோற்றுப் போனவர்கள் பலர். காஸ் தான் ஒற்றைப்படை எண்ணிக்கை n உள்ள பக்கங்களைக் கொண்ட ஒழுங்குப் பலகோணம் மட்டக்கோல், கவராயம் இரண்டைக் கொண்டு வரையப்படவேண்டுமென்றால், n ஒரு ஃபெர்மா பகா எண்ணாகவோ அல்லது அவைகளின் பெருக்குத்தொகையாகவோ இருந்தாக வேண்டும் என்று கண்டுபிடித்தார். 18வது வயதில் இதைக் கண்டுபிடித்தவுடனேதான் தன் கணிதக் கண்டுபிடிப்புகளுக்காக நாட்குறிப்பு எழுதத் தொடங்கினார். அவர் காலமாகி 43 ஆண்டுகள் கழித்தே அவருடைய நாட்குறிப்பு உலகத்தாரின் முன்னிலையில் வைக்கப்பட்டது. காஸினுடைய கண்டுபிடிப்பின்படி, கிரேக்கர்களுக்குத் தெரிந்த 3, 5, 15 ஐத்தவிர 17, 257, 65537 பக்கங்களுக்கும் அல்லது இவைகளின் பெருக்குத்தொகையை எண்ணிக்கையாகக் கொண்ட பக்கங்களுக்கும் ஒழுங்குப் பலகோணம் மட்டக்கோல், கவராயம் இவைகளை மட்டும் கொண்டு வரையமுடியும்.
[தொகு] யூக்ளீடற்ற வடிவியல்
யூக்ளீட் காலத்திலிருந்து இணை முற்கோள் கணித உலகத்திற்குப்பெரிய தலைவலியாகவே இருந்து வந்தது. அதற்கு நிறுவலொன்றும் கிடைக்காமல் அதை முற்கோளாக வைத்திருக்கவேண்டிய அவசியத்தைத் தகர்த்தெறிய வேண்டும் என்று பல நூற்றாண்டுகளில் பலர் முயன்றனர். கடைசியில் 19வது நூற்றாண்டில் லொபசெவிஸ்கி, போல்யாய் இருவரும் தனித்தனியே கணிதத்திலேயே ஒரு அடிப்படை மாற்றம் உண்டாகும் வழியில் இதற்கு ஒரு தீர்வு கண்டுபிடித்தனர். ஆனால் காஸ் அவர்களுக்கு முன்பே அதே வழியில் சென்று அதே மாற்றங்களுக்குத் தன் மனதில் ஒப்புதல் கொண்டு தன் நாட்குறிப்புகளில் எழுதி வைத்திருந்தார். இதனால் இன்றும் யூக்ளீடற்ற வடிவியலுக்குத் தந்தைகளாக இம்மூவருமே சொல்லப்படுகிறார்கள்.
[தொகு] புவிப்பரப்பு அளவைகள்
காஸ் காலத்தியவர்கள் அவரை கணிதவியலராக மாத்திரம் மதிப்பிடவில்லை. ஏனெனில் அவருடைய ஈர்ப்புகள் பயனியல் கணிதத்தை ஒட்டிய புவிப்பரப்பு அளவைகளில் வெகுகாலம் இருந்தன. இளம் வயதுகளில் அவைகளில் ஈடுபட்டவர், தன்னியல் கணிதமான எண் கோட்பாட்டினால் கவரபட்ட பிறகு ஒரு பதினைந்து ஆண்டுகள் தன்னியல் கணிதத்தின் பிரிவுகளான பகுவியல் முதலியவைகளில் தன் மனதைச்செலுத்தினார். 1817 இல் ஹனோவர் மாகாணத்திற்கு புவிப்பரப்பு அளவைகள் எடுக்கும் பொறுப்பு அவரை வந்தடைந்தது. அக்காலத்திலிருந்த அளவுமானிகளைப் பயனற்றதாகக்கருதி ஒரு புதிய 'ஹெலியொட்ரோப்' என்ற மிகவும் பயனுள்ள சாதனம் ஒன்றை உண்டாக்கினார். இதைத்தவிர தன்னுடைய கணிப்புத்திறமையினால் உந்தப்பட்டவராய் இவ்வளவைகளின் மூலம் செய்யப்படும் அளவுகளைக்கணிப்பதில் பல நுட்பமான மாற்றங்கள் செய்து அவைகளின் தரத்தை உயர்த்தினார்.
இதெல்லாவற்றையும் விட முக்கியமானது பெரிய முக்கோணங்களின் கோண அளவுகளை அளந்து தன்னுடைய யூக்ளீடற்ற வடிவியலுக்கு பெளி உலகில் அத்தாட்சி கிடைக்குமா என்று சோதனை செய்தது தான். அதுவரையில் செய்யப்பட்ட பெரியமுக்கோண அளவை அவர் செய்தது.
1142 மீ உயரமுள்ள ப்ரோக்கன் சிகரம், 20 கி.மீ. தூரத்திலிருந்த இன்ஸெல்பர்க் (915 மீ) சிகரம், கெட்டிங்கனுக்குத் தென்மேற்கே 12 கி.மீ. தூரத்திலுள்ள ஹோஹர்ஹாகென் சிகரம் (508 மீ) இம்மூன்று சிகரங்களாலேற்படும் முக்கோணங்களின் மூன்று கோணங்களையும் அளந்தார். இம்முக்கோணத்தின் பக்கங்கள் 70, 110 கி.மீ. இருந்தாலும் மூன்று கோணங்களின் கூட்டுத்தொகை 180o 0' 15" தான் இருந்தது. அவருடைய யூக்ளீடற்ற வடிவியல் கணிப்பு 180 சுழியளவிலிருந்து இன்னும் அதிக வித்தியாசத்தை எதிர்பார்த்தது. அதற்கு இன்னும் பெரிய முக்கோணத்தை அளந்தாக வேண்டும் என்று உணர்ந்து இணைமுற்கோளைப்பற்றிய தன்னுடைய ஆய்வுகளை பிரசுரிக்காமலே இருந்தார். 1831 இல் ஜொஹான் போல்யாய் தன் மகன் வோல்ஃப்காங் போல்யாய் யூக்ளீடற்ற வடிவியலின் அவிரோதத்தை (consistency)ப்பற்றிக் கண்டுபிடித்திருக்கும் முடிவுகளைத் தெரியப்படுத்தினதும் 'இதெல்லாம் நான் முன்னமே அறிந்ததுதான்' என்று அவருக்கு இவர் மறுமொழி கூற, அந்த ஹங்கேரிநாட்டுத் தந்தையும் மகனும் இவரைத் தவறாகப் புரிந்துகொண்டனர்!
[தொகு] வானியலில் குறுங்கோளைப் பற்றிய சாதனை
1801, ஜனவரி 1ம் நாள் பியாஜ்ஜி என்பவர் முதல் குறுங்கோளொன்றைக் கண்டுபிடித்து அதைக் கொஞ்சதூரம் மேற்குவானில் தொலைநோக்கி வழியாகப் பார்த்து மறுபடியும் கீழ்வானில் பார்க்க முயன்றபோது அவர்கள் வானியல் கணிப்புகளின் துல்லியம் போராமல் அதைத்தவற விட்டனர். காஸ் இக்கணிப்புகளைத் துல்லியமாக கணித்து, அவர்கள் குறிப்பிட்ட இடத்திலிருந்து 14 சந்திரன் அளவுகள் தள்ளி ஒரு இடத்தைக் குறிப்பிட்டுச் சொல்ல, அவ்விடத்தில் அக்குறுங்கோள் (சிரிஸ் என்ற பெயருள்ளது) காணப்பட்டது. 24 வயதே ஆன இளம் விஞ்ஞானி காஸ் இதனால் உலகப்புகழ் பெற்றார்.
[தொகு] லப்லாஸின் காஸைப்பற்றிய கணிப்பு
அக்காலத்துப் பிரென்ச் கணித இயலர்களில் லப்லாஸ் முக்கியமான ஒருவர். ஜெர்மனியின் சிறந்த கணித இயலர் யார் என்ற கேள்வி அவரிடம் எழுப்பப்பட்டபோது அவர் 'ப்ஃஆஃப்' (Pfaff) என்றார். 'காஸை மறந்துவிட்டீர்களே' என்று திருப்பிக் கேட்டார்களாம். அவர் கூறிய பதில்: காஸ் உலகெல்லாவற்றிற்கும் சிறந்த கணிதவியலர்!
[தொகு] துணை நூல்கள்
- Stephen Hawking. God created the integers.2005. Running Press. Philadelphia. ISBN 0-7624-1922-9
- James R. Newman. The World of Mathematics. Vol.1.1956. Simon and Schuster, New York