See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Матрицы Паули — Википедия

Матрицы Паули

Материал из Википедии — свободной энциклопедии

Ма́трицы Па́ули — это набор из трёх эрмитовых 2×2 матриц, составляющий базис в пространстве всех эрмитовых 2×2 матриц с нулевым следом. Были предложены Вольфгангом Паули для описания спина электрона в квантовой механике. Вот эти матрицы:


\sigma_1 = 
\begin{pmatrix}
0&1\\
1&0
\end{pmatrix},

\sigma_2 = 
\begin{pmatrix}
0&-i\\
i&0
\end{pmatrix},

\sigma_3 = 
\begin{pmatrix}
1&0\\
0&-1
\end{pmatrix}.

Вместо σ123 иногда используют обозначение σxyz.

Часто также употребляют матрицу


\sigma_0 = 
\begin{pmatrix}
1&0\\
0&1
\end{pmatrix},

совпадающую с единичной матрицей.

Матрицы Паули вместе с матрицей σ0 образуют базис в пространстве всех эрмитовых матриц 2×2 (а не только матриц с нулевым следом).

Содержание

[править] Свойства

[править] Основные соотношения

Эрмитовость и равенство нулю следа:

\begin{matrix}
\sigma_i^\dagger &=& \sigma_i; & \\
\operatorname{Tr} (\sigma_i) &=& 0, & \quad \ i = 1, 2, 3;
\end{matrix}

\sigma_1^2 = \sigma_2^2 = \sigma_3^2 =  \sigma_0= I,

где знак \dagger означает эрмитово сопряжение, I = σ0единичная матрица размерности 2×2.

Правила умножения матриц Паули

\sigma_1\sigma_2 = i\sigma_3,\,\!
\sigma_3\sigma_1 = i\sigma_2,\,\!
\sigma_2\sigma_3 = i\sigma_1,\,\!
\sigma_i\sigma_j = -\sigma_j\sigma_i\! для i\ne j.\,\!

Эти правила умножения можно переписать в компактной форме

\sigma_i \sigma_j = i \epsilon_{ijk} \sigma_k + \delta_{ij} \cdot \sigma_0,\quad  i = 1, 2, 3,

где δijсимвол Кронекера, а εijkсимвол Леви-Чивиты.

Из этих правил умножения следуют коммутационные соотношения

\begin{matrix}
[\sigma_i, \sigma_j]     &=& 2 i\,\epsilon_{i j k}\,\sigma_k, \\
\{\sigma_i, \sigma_j\} &=& 2 \delta_{i j} \cdot \sigma_0.
\end{matrix}

Квадратные скобки означают коммутатор, фигурные — антикоммутатор.

Детерминант матриц Паули равен −1.

[править] Связь с алгебрами Ли

Коммутационные соотношения матриц i\sigma_k\! совпадают с коммутационными соотношениями генераторов алгебры Ли su(2). И действительно, вся эта алгебра, состоящая из антиэрмитовых матриц 2×2, может быть построена из произвольных линейных комбинаций матриц i\sigma_k\;. Группа SU(2) с алгеброй su(2) локально изоморфна группе SO(3) вращений трёхмерного пространства, этим объясняется важность матриц Паули для физики.

[править] Применение в физике

В квантовой механике матрицы i\sigma_j/2\! представляют собой генераторы инфинитезимальных вращений для нерелятивистских частиц со спином ½. Вектор состояния таких частиц представляет собой двухкомпонентный спинор. Двухкомпонентные спиноры образуют пространство фундаментального представления группы SU(2).

[править] Ссылки


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -