See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Immagine:Simple harmonic oscillator.gif - Wikipedia

Immagine:Simple harmonic oscillator.gif

Da Wikipedia, l'enciclopedia libera.

Logo di Commons

Questo file e la sua pagina di descrizione si trovano su Wikimedia Commons.
Se non hai mai usato Commons, visita la pagina di benvenuto o leggi le FAQ.

La descrizione che appare in quella sede, sulla relativa pagina di descrizione del file, viene mostrata di seguito.
Description

Illustration of a en:Simple harmonic oscillator

Source

self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code).

Date

02:42, 24 June 2007 (UTC)

Author

Oleg Alexandrov

Permission
(Reusing this image)

see below

Other versions Damped version


Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] Source code


function main()

% colors
   red=[0.867 0.06 0.14];
   blue = [0, 129, 205]/256;
   green = [0, 200,  70]/256;
   black = [0, 0, 0];
   white = 0.99*[1, 1, 1];
   cardinal = [196      30      58]/256;
   cerulean = [0        123     167]/256;
   denim    = [21       96      189]/256;
   cobalt   = [0        71      171]/256;
   pblue    = [0        49      83]/256;
   teracotta= [226      114     91]/256;
   tene     = [205      87      0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color    = tene;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;

   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 8;

   A = 0.2; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)

   %  Each of the small lines has length l
   l = 0.05;

   N = 15;  % times per oscillation 
   No = 1; % number of oscillations
   for i = 1:N*No

      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;

   
      t = 2*pi*(i-1)/(N-0)+pi/2; % current time
      H= A*sin(t) +  B;      % position of the mass

      % plot the spring from Start to End
      Start = [0, 0]; End = [0, H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 

      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
            
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);

      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);

          
          % the bounding box
          Sx = -0.4*ww;  Sy = B-A-ms+0.05;
          Lx = 0.4*ww+l; Ly=l;
          axis([Sx, Lx, Sy, Ly]);
          plot(Sx, Sy, '*', 'color', white); % a hack to avoid a saveas to eps bug
          
      saveas(gcf, sprintf('Spring_frame%d.eps', 1000+i), 'psc2') %save the current frame
      disp(sprintf('Spring_frame%d', 1000+i)); %show the frame number we are at
      
      pause(0.1);
      
   end

% The following command was used to create the animated figure.    
% convert -antialias -loop 10000  -delay 7 -compress LZW Spring_frame10* Simple_harmonic_oscillator.gif
   

function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B

   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
   
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
   
   X=linspace(0, 1, Npoints);

   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
   
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 

% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
   
% shift by b to the rigth and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 

   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end

%  shift the spring to start from 0
   X = X-X(1);
   
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];

   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end

function plot_wall(S, E, l, lw, wall_color)

%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
   
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

   V=l*(0:0.1:1);

   for i=0:(no-1)
      plot(S+ i*spacing + V, V, 'color', wall_color)
   end


Cronologia di questa immagine

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

DataDimensioniUtenteCommento
corrente05:12, 24 giu 2007116×359 (52 KB)Oleg Alexandrov (tweak)
05:10, 24 giu 2007157×362 (51 KB)Oleg Alexandrov (Reverted to earlier revision)
05:10, 24 giu 2007116×359 (7 KB)Oleg Alexandrov (tweak)
04:42, 24 giu 2007157×362 (51 KB)Oleg Alexandrov ({{Information |Description= |Source=self-made with en:Matlab. Converted to gif animation with the en:ImageMagik convert tool. |Date= ~~~~~ |Author= Oleg Alexandrov }} {{PD-self}})

Le pagine seguenti richiamano questa immagine:


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -