Óræðar tölur
Úr Wikipediu, frjálsa alfræðiritinu
Talnamengi í stærðfræði | ||||||
Náttúrlegar tölur | ||||||
Heiltölur | ||||||
Ræðar tölur | ||||||
Óræðar tölur | ||||||
Rauntala | ||||||
Tvinntölur | ||||||
Fertölur | ||||||
Áttundatölur | ||||||
Sextándatölur |
Óræðar tölur er talnamengi þeirra rauntalna, sem ekki eru ræðar tölur — það er — allar þær tölur sem ekki er hægt að skrifa sem hlutfall tveggja heiltalna. Mengi þetta er táknað með stafnum og er skilgreint með mengjaskilgreiningarhætti á eftirfarandi hátt:
Það má ímynda sér óræða rauntölu sem óendanlega runu tölustafa þannig að enginn hluti rununnar fari á endanum að endurtaka sig. Sem dæmi um rauntölu sem tekur að endurtaka sig er t.d. 0.142857142857142857... (og endurtekur sig svona óendanlega oft). Hún er því ekki óræð, og reyndar er hún ræða talan 1/7.
Dæmi um óræðar tölur eru t.d. π = 3,14159265..., e = 2,71828... og .
Í vel skilgreindum skilningi eru óræðu tölurnar "miklu fleiri" en ræðu tölurnar. Þær eru mest notaðar í stærðfræðigreiningu.
Óræðu tölunum skiptast í tvo undirflokka, algebrulegar tölur og torræðar tölur. Algebrulegar kallast þær tölur sem eru lausnir margliðujafna með ræðum stuðlum, en hinar eru „torræðar“. Af dæmunum sem nefnd voru hér að ofan eru π og e „torræðar“, en er algebruleg, enda lausn á x2 − 2 = 0.