See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Problème de Waring - Wikipédia

Problème de Waring

Un article de Wikipédia, l'encyclopédie libre.

En théorie des nombres, le problème de Waring, proposé en 1770 par Edward Waring, demande si, pour tout entier naturel k, il existe un entier naturel s tel que tout entier soit la somme d'au plus s puissances kième d'entiers. La réponse affirmative fut apportée par David Hilbert en 1909. Quelquefois, ce sujet est décrit comme le théorème de Hilbert-Waring.

Pour chaque k, nous notons le plus petit s par g(k). Nous avons g(1) = 1. Quelques calculs simples montrent que 7 requiert 4 carrés, 23 requiert 9 cubes, et 79 requiert 19 puissance quatrièmes. Waring conjectura que ces valeurs étaient en fait les meilleures possibles.

Le théorème des quatre carrés de Lagrange de 1770 affirme que chaque nombre naturel est la somme d'au plus quatre carrés ; puisque trois carrés ne sont pas suffisants, ce théorème établit g(2) = 4. Le théorème des quatre carrés de Lagrange fut conjecturé par Fermat en 1640 et sa première mention date de 1621.

Au fil des années, divers résultats sur les valeurs de g furent établis, en utilisant des techniques de démonstration de plus en plus sophistiquées et complexes. Par exemple, Liouville montra que g(4) vaut au plus 53. Hardy et Littlewood démontrèrent que tous les nombres suffisamment grands sont la somme d'au plus 19 puissances quatrièmes.

L'égalité g(3) = 9 fut établie entre 1909 et 1912 par Wieferich et A. J. Kempner, l'égalité g(4) = 19 en 1986 par R. Balasubramanian, F. Dress, et J.-M. Deshouillers, l'egalité g(5) = 37 en 1964 par Jing-run Chen et l'égalité g(6) = 73 en 1940 par Pillai.

Toutes les autres valeurs de g sont connues aujourd'hui, grâce au travail de Dickson, Pillai, Rubugunday et Niven. Leur énoncé contient deux cas et il est conjecturé que le second cas ne peut jamais se produire ; dans le premier cas, la formule se lit

g(k) = E((3/2)k) + 2k - 2     pour k ≥ 6.

[modifier] Lectures pour aller plus loin

  • W. J. Ellison: Waring's problem. American Mathematical Monthly, volume 78 (1971), pp. 10-76. Exposé, contenant une formule précise pour g(k) et une version simplifiée de la preuve d'Hilbert.
  • Hans Rademacher and Otto Toeplitz, The Enjoyment of Mathematics (1933) (ISBN 0-691-02351-4). Dont une preuve du théorème de Lagrange, accessible aux étudiants.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -