NERVA
Un article de Wikipédia, l'encyclopédie libre.
NERVA (Nuclear Engine for Rocket Vehicle Application - moteur nucléaire pour application moteur-fusée) est un programme de recherche relatif à la propulsion nucléaire thermique, mené aux États-Unis par la NASA entre 1960 et 1972. De nombreux prototypes de réacteur sont testés dans le cadre de ce programme dont l'objectif est de participer au développement d'un véhicule en vue d’une mission spatiale habitée vers la planète Mars.
La technologie de propulsion étudiée consiste en l’éjection à grande vitesse d’hydrogène réchauffé par un réacteur nucléaire. En 1968 et 1969, un modèle expérimental d’une poussée de 250 à 350 kN fut essayé au sol.
Sommaire |
[modifier] Historique
Les études de propulsion nucléaire thermique furent lancées en 1955 par l'AEC et le contractant Westinghouse sous le nom de projet Rover et avec pour but le développement de missiles.
À la création de la NASA en 1958, elle fut associée au projet y ajoutant les objectifs d'exploration spatiale. Le développement vraiment orienté vers la propulsion commença en 1961 sous la dénomination NERVA. Son but n'était pas de fabriquer un moteur directement destiné à une expérimentation spatiale, mais de proposer un démonstrateur validant la technologie et permettant de caractériser précisément ce moyen de propulsion en fonction des exigences des missions envisageables dans les 20 années à venir. Ainsi, les critères de sûreté et fiabilité du système primaient sur le poids et les performances, de plus, il devait pouvoir être démonté, remonté et testé en cours de mission.
Le développement se fit autour du concept de réacteur à modérateur graphite et caloporteur hydrogène, pendant ce temps une activité moindre concernait l'étude de technologies plus risquées et plus performantes telles que les réacteurs à lit de boulets, à cœur liquide ou gazeux. Malgré les innombrables difficultés techniques inhérentes à un concept aussi nouveau, le projet avança rapidement et aboutit en 1969 au test au sol d'un moteur quasiment qualifié pour le vol.
Le projet résista longtemps aux velléités de coupes budgétaires du Congrès, notamment grâce au soutien du sénateur Clinton P. Anderson qui l'appuya au détriment du projet Grand Tour[1]. Mais en 1971, alors qu'était en cours de conception un dernier étage de fusée Saturn à base de moteur NERVA réutilisable, la NASA en repli avec la fin du programme Apollo n'avait pas de mission envisagée pour cette propulsion dans les dix ans à venir ; le budget alloué ne fut que d'un cinquième de celui nécessaire et ne porta que sur quelques développements d'équipements critiques[2]. Le programme prit officiellement fin en 1972 et les applications nucléaires spatiales se cantonnèrent ensuite aux sources d'énergie pour alimenter les missions.
Le projet coûta 1,4 milliards de dollars de 1972, soit 9,6 milliards en dollars de 1991.
Cette technologie fut un temps remise au goût du jour du fait des besoins exprimés par l'Initiative d'exploration spatiale (Space Exploration Initiative ou SEI), initié par George Bush en 1989), à savoir la réduction de taille, poids, coût et durée de voyage des véhicules spatiaux. Ces exigences imposent une amélioration de l'impulsion spécifique au delà des possibilités de la propulsion chimique conventionnelle. La propulsion nucléaire thermique semblait alors la seule option accessible[3].
[modifier] Essais
Les nombreux essais se déroulèrent sur le site d'essais nucléaires du Nevada à Jackass Flats [4]. Ils avaient pour but une mise au point progressive d'un réacteur basé sur des matériaux dont les comportements aux températures et pressions d'utilisation étaient initialement inconnus. Des réacteurs maquettes (Honeycomb et Zepo) furent nécessaires pour modéliser les caractéristiques neutroniques d'un système graphite/hydrogène.
La première série de prototypes fut nommée Kiwi d'après l'oiseau terrestre et en référence au fait qu'ils n'étaient absolument pas conçus pour le vol. KIWI-A généra une puissance de 70 MW et éjectait l'hydrogène à 2 683 K.
Programme NERVA | Recherche | ||||||
---|---|---|---|---|---|---|---|
test réacteur |
test moteur |
Kiwi | Phoebus | Pewee | Nuclear Furnace |
||
1959 | Kiwi A Kiwi A' |
||||||
1960 | Kiwi A3 | ||||||
1961 | Kiwi B1A | ||||||
1962 | Kiwi B1B Kiwi B4A |
||||||
1963 | |||||||
1964 | NRX-A1 NRX-A2 |
Kiwi B4D Kiwi B4E |
|||||
1965 | NRX-A3 | Kiwi TNT | Phoebus 1A | ||||
1966 | NRX-A5 | NRX/EST | |||||
1967 | NRX-A6 | Phoebus 1B | |||||
1968 | XECF | Phoebus 2A | Pewee | ||||
1969 | XE | ||||||
1970 | |||||||
1971 | |||||||
1972 | NF-1 |
Les moteurs NERVA étaient dérivés des réacteurs Kiwi-B et étaient conçus dans l'optique de missions lunaires avancées ou de missions martiennes habitées, impliquant des véhicules pesant 700 à 1 400 t avec un système de propulsion de 900 kN de poussée et une impulsion spécifique supérieure à 800 s. Il fut prévu que ces systèmes utilisent plusieurs moteurs identiques : un modèle de 330 kN de poussée, 825 s d'Isp atteignant 1 000 MW de puissance.
La première version nommée NRX (Nuclear Reactor Experimental) ne comprenait pas le système d'alimentation ni le divergent de la tuyère. Son objectif était de pouvoir fonctionner une heure à 2 300 K, soit le temps nécessaire à une manœuvre de transfert vers Mars. L'expérimentation fut un succès et incita à passer rapidement aux tests en configuration de vol.
En 1966, le réacteur suivant NRX/EST (Engine System Test) était donc équipé de turbopompes et d'une tuyère complète. En plus de l'endurance, il devait tester les régimes intermédiaires, arrêts et redémarrages multiples. Ces essais furent plus que satisfaisants, accomplissant ainsi les objectifs initiaux du projet Rover. Les essais suivants apportèrent diverses améliorations qui amenèrent en 1969 à la construction du moteur XE et de son banc de test vertical dépressurisé ETS-1 (Engine Test Stand). Cet ultime modèle comprenait tous les sous-systèmes critiques définitifs et pouvait démarrer et se réguler de façon autonome. Il atteignit une température de 2 270 K et une Isp de 710 s.
Parallèlement à ces essais, d'autres réacteurs validaient des techniques alternatives :
- Phoebus dans le domaine des hautes puissances, le modèle 1A fonctionna pendant 10 minutes à 1 090 MWet 2 370 K, le modèle B pendant 30 minutes à 1 500 MW et finalement Phoebus 2A atteignit 4 000 MW pendant 12 minutes (le réacteur nucléaire le plus puissant jamais construit);
- Pewee, un modèle réduit de Kiwi, expérimenta les revêtements en carbure de zirconium ZrC et atteignit 500 MW, améliorant ainsi la densité énergétique du système et l'Isp à 825 s ;
- Nuclear Furnace, dix fois moins puissant que Pewee, était conçu pour un fonctionnement prolongé (6 500 s à 44 MW) et pour permettre un démontage automatique et une réutilisation après remplacement du cœur. Son rôle était de tester les nouvelles compositions et configurations de combustible. Ce modèle fut le premier et le seul fonctionnant en cycle fermé, tous les autres rejetaient leurs gaz dans l'atmosphère.
À la fin du projet, la conception prévoyait plusieurs améliorations permettant un fonctionnement à 2 500 K et une Isp de 890 s. Dans le même temps, une évolution technologique baptisée ENABLER devait permettre au moteur d'atteindre 2 700 K et une Isp de 925 s grâce à un nouveau type de combustible qui ne fut testé que dans NF-1.
L'ensemble des essais dégagèrent plus de 6 GWh d'énergie.
[modifier] Fonctionnement
[modifier] Carburant nucléaire
Le combustible nucléaire est constitué d'un substrat de graphite, ensemencé de particules micrométriques de dioxyde d'uranium UO2 (KIWI A à B4D), ou de perles de 100 µm de carbure d'uranium UC2 enrobées de carbone pyrolitique (KIWI B4E, NERVA, Phoebus et Pewee). Dans la version ENABLER, le combustible est en matrice composite de graphite contenant 35% volumiques de dispersion de carbure d'uranium et de zirconium (U, Zr)C.
Le matériau est sous forme de barres percées de canaux de passage[5], obtenues par extrusion d'un mélange farine de graphite-combustible-résine liante. Elles sont ensuite cuites lentement pour lier la résine, puis fortement pour les re-graphiter.
Le choix du substrat en graphite était justifié par ses caractéristiques neutroniques et sa résistance aux hautes températures. Cependant, l'hydrogène réagit à son contact et entraîne une corrosion importante du cœur, c'est pourquoi les barres sont revêtues d'une pellicule de 0,05 mm de carbure de niobium ou de carbure de zirconium. Le revêtement est réalisé par dépôt chimique en phase vapeur, ou par insertion dans les canaux de tubes de niobium transformés en couche de carbure NbC par chauffage jusqu'à la température d'eutectique carbone+niobium.
Néanmoins, ce revêtement n'empêche pas complètement la dégradation du cœur par divers mécanismes (corrosion et diffusion), d'environ 1 g/min pour l'ensemble d'un réacteur NRX. Dans NRX-A6, une fine couche de molybdène est ajoutée sur les barres pour combler les micro-fissures de la couche protectrice, diminuant les pertes à 0,2 g/min.
Avec ENABLER, la structure composite du combustible et la couche protectrice en ZrC diminuent encore les pertes grâce à des coefficients de dilatation plus compatibles, préservant ainsi le revêtement de déformations mécaniques fissurantes ou décollantes.
Dans la conception finale, l'assemblage est réalisé autour de barres spécifiques refroidies par le circuit de régénération. Ces barres permettent de relier 2 à 6 barres de combustible et contiennent un élément modérateur en zirconium hybride (ZrH). Ainsi, la puissance du réacteur assemblé peut être réglée non seulement par la longueur des barres (90 cm ou 1,30 m), mais aussi par la proportion de barres d'assemblages (de 1/6 à 1/2)[6].
[modifier] Voie d'écoulement
En régime établi, l'hydrogène emprunte le circuit suivant :
- poussé par la pression du réservoir jusqu'au moteur en passant par un cardan permettant d'orienter la poussée du réacteur ;
- comprimé par des pompes centrifuges ;
- passe par le circuit de régénération de la tuyère ;
- remonte par la double paroi du col de la tuyère pour être distribué dans les organes périphériques du réacteur (réflecteur de neutrons, barres de contrôle et enceinte pressurisée) ;
- remonté au sommet du réacteur, l'hydrogène est envoyé dans le cœur d'où il s'échappe surchauffé vers la tuyère ;
- 3 % du flot est perdu car soutiré avant le cœur (topping cycle) ou avant le col de la tuyère (hot bleed cycle) pour entraîner les turbines des pompes (pour être à une température compatible avec les matériaux de ces turbines, il est en plus redilué avec de l'hydrogène provenant directement du réservoir).
[modifier] Spécification d'étage de fusée NERVA
De nombreuses configurations de véhicule ou d'étage à base de moteur NERVA ont été proposées pendant et après le projet. Ci-dessous sont présentées les caractéristiques de trois de ces configurations :
- Saturn C-3BN : proposition de remplacement du dernier étage S-IVB des fusées Saturn C-3 par un étage nucléaire ;
- Saturn V-25(S)U : la fusée proposée par Boeing sert à mettre en orbite basse un étage NERVA, cinq de ces étages sont ensuite assemblés pour constituer un véhicule habité à destination de Mars ;
- Nerva 2 : actualisation du concept NERVA en 1991.
Année | 1961 | 1969 | 1991 |
---|---|---|---|
Véhicule | Saturn C-3BN | Saturn V-25(S)U | Nerva 2 |
Étagement | LOX/Kérosène LOX/LH2 Saturn S-N C-3BN |
4 boosters solides LOX/Kérosène LOX/LH2 Saturn S-N V-25(S)U |
2 boosters Titan NERVA 2/NTR |
étage NERVA | |||
Nom moteur | NERVA | NERVA | NERVA NTR |
Isp | 800 s | 825 s | 925 s |
Poussée (vide) | 266 kN | 889 kN | 333 kN |
Temps d'allumage | 720 s | 1500 s | 3575 s |
Diamètre | 10,1 m | 10,1 m | 10,0 m |
Hauteur | 16,6 m | 48,2 m | 47,6 m |
Masse initiale | 32,5 t | 245 t | 158 t |
Masse sèche | 7,7 t | 71 t | 27 t |
[modifier] Dans la fiction
Dans le roman uchronique Voyage de Stephen Baxter, Richard Nixon lance à l'instar de Kennedy un programme d'exploration martienne basé sur l'utilisation de fusées Apollo-N à réacteur NERVA.
[modifier] Sources
- (en)[pdf]W.H. Robbins et H.B. Finger, « An historical perspective of the NERVA nuclear rocket engine technology program », 1991, NASA Contractor Report 187154. Consulté le 18/10/2006
- (en)[pdf]J.L. Finseth, « Overview of Rover engine tests: Final report », 1991, NASA. Consulté le 18/10/2006
- (en)[pdf]John S. Clark, Patrick McDaniel, Steven Howe, Ira Helms, Marland Stanley, « Nuclear Thermal Propulsion Technology: Results of an Interagency Panel in FY 1991 », 1993, NASA. Consulté le 15/12/2006
- (en)[pdf]J.M. Taub, « A Review of Fuel Element Development for Nuclear Rocket Engines », 1975, Los Alamos Scientific Laboratory. Consulté le 15/03/2007
- (en)[pdf]Divers, « Nuclear Thermal Propulsion Technology: A Joint NASA/DOE/DOD Workshop », 1991, NASA. Consulté le 01/05/2007
[modifier] Notes et références
- ↑ Andrew J. Butrica, « §11. Voyager: The Grand Tour of Big Science », 1998, From engineering science to big science, Nasa History Division. Consulté le 20/10/2006
- ↑ T.A. Heppenheimer, « §9. Nixon's decision », 1999, The Space Shuttle decision, Nasa History Division. Consulté le 20/10/2006
- ↑ John E. Pike, « Space Exploration Initiative - Nuclear Thermal Propulsion », Federation of American Scientists. Consulté le 20/10/2006
- ↑ Les installations du Nuclear Rocket Development Station (NRDS) sont toujours visible ici :
- ↑ KIWI A' et A3 : cylindres 1/6 de longueur, ∅ 19mm, à 4 canaux; KIWI B1A : cylindre 1/2 longueur à 7 canaux; à partir de KIWI B4A : prisme hexagonal 19 mm x 1,3 m à 19 canaux de 2,54 mm
- ↑ (en) [pdf] Stanley K. Borowski, Robert R. Corban, Melissa L. McGuire et Erik G. Beke, « Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars », 1993, AIAA. Consulté le 04-12-2006
[modifier] Liens externes
- (fr) Une description détaillée et richement illustrée sur Prototypes.com
- (en) sur astronautix.com : spécifications du moteur NERVA, véhicule NERVA et NERVA 2/NTR
La version du 11 mai 2007 de cet article a été reconnue comme « bon article » (comparer avec la version actuelle). Pour toute information complémentaire, consulter sa page de discussion et le vote l’ayant promu. |