Ortogonaalinen matriisi
Wikipedia
Ortogonaalinen matriisi on matriisi jonka transpoosi on sen käänteismatriisi eli
- .
Tässä esiintyvä I on yksikkömatriisi. Erityisen kiinnostavia ovat erikoiset ortogonaalimatriisit (engl. special orthogonal matrices), joiden determinantille on lisäksi voimassa
- .
Ortogonaalimatriiseja esiintyy monissa sovelluksissa. Esimerkiksi kierrot ja peilaukset ovat ortogonaalimatriisien kuvaamia. Ortogonaalisia matriiseja käytetään myös esimerkiksi muiden matriisien esittämisessä QR-hajotelman avulla.
Ortogonaalisten matriisien keskeisiin ominaisuuksiin kuuluu, että ortogonaaliset (3×3-)matriisit muodostavat ryhmän, josta käytetään merkintää O(3) ja vastaavat erikoiset ortogonaalimatriisit ryhmän SO(3). Näillä ryhmillä ja niiden ominaisuuksilla on merkitystä mm. fysiikassa.
[muokkaa] Esimerkkejä
Esimerkkejä ortogonaalisista matriiseista:
- Yksikkömatriisi:
- Peilaus xy-tason suhteen:
- Eräs rotaation ja peilauksen yhdistelmä: