See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Número poligonal - Wikipedia, la enciclopedia libre

Número poligonal

De Wikipedia, la enciclopedia libre

En matemáticas, un número poligonal es un número que puede recomponerse en un polígono regular. Los matemáticos de la Antigüedad descubrieron que los números podían recomponerse de ciertas formas cuando los representaban con piedras o semillas. El número 10 puede recomponerse como un triángulo (ver número triangular):

   x 
  x x 
 x x x 
x x x x 

Sin embargo, el 10 no puede formar un cuadrado, pero el 9 sí (véase número cuadrado):

x x x 
x x x 
x x x 

Algunos números, como el 36, pueden recomponerse tanto en un cuadrado como en un triángulo (véase número cuadrado triangular):

x x x x x x 
x x x x x x 
x x x x x x 
x x x x x x 
x x x x x x 
x x x x x x 
       x 
      x x 
     x x x 
    x x x x 
   x x x x x 
  x x x x x x 
 x x x x x x x 
x x x x x x x x 

El método empleado para agrandar el polígono hasta el siguiente tamaño es extender dos brazos adyacentes por un punto y luego añadir los lados extra requeridos entre los puntos. En los siguientes diagramas, el nuevo paso de agrandamiento se representará con el símbolo +.

Números triangulares

1:

+               x

3:

 x               x
+ +             x x

6:

  x               x
 x x             x x
+ + +           x x x

10:

   x               x
  x x             x x
 x x x           x x x
+ + + +         x x x x

Números cuadrados

1:

+               x

4:

x +             x x
+ +             x x

9:

x x +           x x x
x x +           x x x
+ + +           x x x

16:

x x x +         x x x x
x x x +         x x x x
x x x +         x x x x
+ + + +         x x x x

Los polígonos con un mayor número de lados, como los pentágonos y hexágonos, también pueden representarse como reordenamientos de puntos (por convención, el 1 es el primer número poligonal para cualquier número de lados).

Números pentagonales:

1:

+                   x

5:

 x                   x
+ +                 x x 
+ +                 x x 

12:

   x                   x
  x x                 x x
+ x x +             x x x x
+     +             x     x
+  +  +             x  x  x 

22:

     x                   x
    x x                 x x
  x x x x             x x x x
+ x     x +         x x     x x
+ x  x  x +         x x  x  x x
+         +         x         x
+  +   +  +         x  x   x  x

35:

       x                   x
      x x                 x x
    x x x x             x x x x
  x x     x x         x x     x x 
+ x x  x  x x +     x x x  x  x x x
+ x         x +     x x         x x
+ x  x   x  x +     x x  x   x  x x
+             +     x             x
+  +   +   +  +     x  x   x   x  x

Números hexagonales

1:

 x

6:

    x               x  
  +   +           x   x 
  +   +           x   x 
    +               x  

15:

     x                 x   
   x   x             x   x  
 + x   x +         x x   x x 
 +   x   +         x   x   x 
 +       +         x       x 
   +   +             x   x  
     +                 x   

28:

        x                       x    
      x   x                   x   x   
    x x   x x               x x   x x  
  + x   x   x +           x x   x   x x 
  + x       x +           x x       x x 
  +   x   x   +           x   x   x   x 
  +     x     +           x     x     x 
    +       +               x       x  
      +   +                   x   x   
        +                       x    

45:

          x                           x
        x   x                       x   x    
      x x   x x                   x x   x x   
    x x   x   x x               x x   x   x x  
  + x x       x x +           x x x       x x x 
  + x   x   x   x +           x x   x   x   x x 
  + x     x     x +           x x     x     x x 
  +   x       x   +           x   x       x   x 
  +     x   x     +           x     x   x     x 
    +     x     +               x     x     x  
      +       +                   x       x   
        +   +                       x   x    
          +                           x     

66: (que también es un número triangular)

          x                             x
        x   x                         x   x
      x x   x x                     x x   x x
    x x   x   x x                 x x   x   x x
  x x x       x x x             x x x       x x x
+ x x   x   x   x x +         x x x   x   x   x x x
+ x x     x     x x +         x x x     x     x x x
+ x   x       x   x +         x x   x       x   x x
+ x     x   x     x +         x x     x   x     x x
+   x     x     x   +         x   x     x     x   x
+     x       x     +         x     x       x     x
  +     x   x     +             x     x   x     x
    +     x     +                 x     x     x
      +       +                     x       x
        +   +                         x   x
          +                             x

91:

            x                             x
          x   x                         x   x
        x x   x x                     x x   x x
      x x   x   x x                 x x   x   x x
    x x x       x x x             x x x       x x x
  x x x   x   x   x x x         x x x   x   x   x x x
+ x x x     x     x x x +     x x x x     x     x x x x
+ x x   x       x   x x +     x x x   x       x   x x x
+ x x     x   x     x x +     x x x     x   x     x x x
+ x   x     x     x   x +     x x   x     x     x   x x
+ x     x       x     x +     x x     x       x     x x
+   x     x   x     x   +     x   x     x   x     x   x
+     x     x     x     +     x     x     x     x     x
  +     x       x     +         x     x       x     x
    +     x   x     +             x     x   x     x
      +     x     +                 x     x     x
        +       +                     x       x
          +   +                         x   x
            +                             x

Si l es el número de lados de un polígono, entonces la fórmula para el n-ésimo número poligonal de l lados es ½n((l-2)n - (l-4)).

Nombre Fórmula n=1 2 3 4 5 6 7 8 9 10 11 12 13
Triangular ½n(1n + 1) 1 3 6 10 15 21 28 36 45 55 66 78 91
Cuadrado ½n(2n - 0) 1 4 9 16 25 36 49 64 81 100 121 144 169
Pentagonal ½n(3n - 1) 1 5 12 22 35 51 70 92 117 145 176 210 247
Hexagonal ½n(4n - 2) 1 6 15 28 45 66 91 120 153 190 231 276 325
Heptagonal ½n(5n - 3) 1 7 18 34 55 81 112 148 189 235 286 342 403
Octagonal ½n(6n - 4) 1 8 21 40 65 96 133 176 225 280 341 408 481
Nonagonal ½n(7n - 5) 1 9 24 46 75 111 154 204 261 325 396 474 559
Decagonal ½n(8n - 6) 1 10 27 52 85 126 175 232 297 370 451 540 637
11-agonal ½n(9n - 7) 1 11 30 58 95 141 196 260 333 415 506 606 715
12-agonal ½n(10n - 8) 1 12 33 64 105 156 217 288 369 460 561 672 793
13-agonal ½n(11n - 9) 1 13 36 70 115 171 238 316 405 505 616 738 871
14-agonal ½n(12n - 10) 1 14 39 76 125 186 259 344 441 550 671 804 949
15-agonal ½n(13n - 11) 1 15 42 82 135 201 280 372 477 595 726 870 1027
16-agonal ½n(14n - 12) 1 16 45 88 145 216 301 400 513 640 781 936 1105
17-agonal ½n(15n - 13) 1 17 48 94 155 231 322 428 549 685 836 1002 1183
18-agonal ½n(16n - 14) 1 18 51 100 165 246 343 456 585 730 891 1068 1261
19-agonal ½n(17n - 15) 1 19 54 106 175 261 364 484 621 775 946 1134 1339
20-agonal ½n(18n - 16) 1 20 57 112 185 276 385 512 657 820 1001 1200 1417
21-agonal ½n(19n - 17) 1 21 60 118 195 291 406 540 693 865 1056 1266 1495
22-agonal ½n(20n - 18) 1 22 63 124 205 306 427 568 729 910 1111 1332 1573
23-agonal ½n(21n - 19) 1 23 66 130 215 321 448 596 765 955 1166 1398 1651
24-agonal ½n(22n - 20) 1 24 69 136 225 336 469 624 801 1000 1221 1464 1729
25-agonal ½n(23n - 21) 1 25 72 142 235 351 490 652 837 1045 1276 1530 1807
26-agonal ½n(24n - 22) 1 26 75 148 245 366 511 680 873 1090 1331 1596 1885
27-agonal ½n(25n - 23) 1 27 78 154 255 381 532 708 909 1135 1386 1662 1963
28-agonal ½n(26n - 24) 1 28 81 160 265 396 553 736 945 1180 1441 1728 2041
29-agonal ½n(27n - 25) 1 29 84 166 275 411 574 764 981 1225 1496 1794 2119
30-agonal ½n(28n - 26) 1 30 87 172 285 426 595 792 1017 1270 1551 1860 2197

Referencia


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -