See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Conjunto bien ordenado - Wikipedia, la enciclopedia libre

Conjunto bien ordenado

De Wikipedia, la enciclopedia libre

En teoría de conjuntos, un conjunto bien ordenado es un conjunto no vacío totalmente ordenado tal que todo subconjunto no vacío tiene un elemento mínimo. Equivalentemente, puede decirse que un conjunto A es bien ordenado si es totalmente ordenado y bien fundado.

Tabla de contenidos

[editar] Definición de primer elemento

Si A es un conjunto totalmente ordenado se dice que n es el primer elemento o elemento mínimo de A si satisface:

  • n es un elemento de A
n\in A
  • Si m es cualquier elemento de A, entonces n es menor o igual que m
\forall m\in A\quad n\leq m

Intuitivamente se entiende que el elemento mínimo es el más pequeño de un conjunto.

[editar] Principio del buen orden

El principio del buen orden es un lema que establece que todo conjunto que esté formado únicamente por números naturales tiene un primer elemento. Es decir, que el conjunto de los números naturales es bien ordenado. El primer elemento de los números naturales es 0.

[editar] Demostración del principio del buen orden

Sea A\subseteq\mathbb{N} un conjunto no vacío. Si A no tiene elemento mínimo, entonces existe un conjunto B = \mathbb{N}\setminus A.

  • 0 debe de estar en B puesto que de no ser así, 0 sería el elemento mínimo de A.
  • Si n está en B, entonces n + 1 también está en B, porque de lo contrario, n + 1 sería un elemento mínimo de A

Luego entonces por el principio de inducción matemática,B=\mathbb{N} y A = \emptyset, pero eso contradice la suposición de que A no era un conjunto vacío.

Por lo tanto, A debe tener elemento mínimo.

[editar] Generalización

Si (A, ≤) es un conjunto bien ordenado, y B es un subconjunto de A con la relación de orden inducida y f:AB un isomorfismo, entonces para todo aA, vale af(a).

Dado un número ordinal α, el conjunto de todos los números ordinales β < α es un conjunto bien ordenado. Así \mathbb{N} es isomorfo al conjuno ordenado {β: β < ω}.

Teorema. Para todo conjunto bien ordenado (A, ≤) existe un único número ordinal α tal que A sea isomorfo al intervalo inicial de números ordinales {β: β < α}. Vale notar que caso exista un isomorfismo de orden A → {β: β < α}, es único.

Este resultado significa que los conjuntos bien ordenados son clasificados hasta isomorfismo por los números ordinales.

Teorema. Para todo conjunto A, existe una relación de orden total ≤ sobre A tal que (A, ≤) sea bien ordenado.

De hecho el teorema anterior es equivalente al axioma de elección en la teoría de los conjuntos.

Una generalización de la noción de conjunto bien ordenado es la de conjunto bien fundado.

[editar] Referencias

  • Keith Devlin, The Joy of Sets, Springer Verlag, 1992

[editar] Véase también


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -