ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Separable extension - Wikipedia, the free encyclopedia

Separable extension

From Wikipedia, the free encyclopedia

In mathematics, an algebraic field extension L/K is separable if it can be generated by adjoining to K a set each of whose elements is a root of a separable polynomial over K. In that case, each β in L has a separable minimal polynomial over K.

The condition of separability is central in Galois theory. A perfect field is one for which all finite (equivalently, algebraic) extensions are separable. There exists a simple criterion for perfectness: a field F is perfect if and only if

  • F has characteristic 0, or
  • F has a nonzero characteristic p, and every element of F has a p-th root in F.

Equivalently, the second condition says that the Frobenius endomorphism of F, x\mapsto x^p, is an automorphism.

In particular, all fields of characteristic 0 and all finite fields are perfect. This means that the separability condition can be assumed in many contexts. The effects of inseparability (necessarily for infinite K of characteristic p) can be seen in the primitive element theorem, and for the tensor product of fields.

Given a finite extension L/K of fields, there is a largest subfield M of L containing K such that M is a separable extension of K. When M = K the extension L/K is called a purely inseparable extension. In general an algebraic extension factors as a purely inseparable extension of a separable extension, since the compositum of a family of separable extensions is again separable.

Purely inseparable extensions do occur for quite natural reasons, for example in algebraic geometry in characteristic p. If K is a field of characteristic p, and V an algebraic variety over K of dimension > 0, consider the function field K(V) and its subfield K(V)p of p-th powers. This is always a purely inseparable extension. Such extensions occur as soon as one looks at multiplication by p on an elliptic curve over a finite field of characteristic p.

In dealing with non-perfect fields K, one introduces the separable closure Ksep inside an algebraic closure, which is the largest separable subextension of Kalg/K. Then Galois theory can be carried out inside Ksep.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -