ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Pronic number - Wikipedia, the free encyclopedia

Pronic number

From Wikipedia, the free encyclopedia

A pronic number, oblong number or heteromecic number, is a number which is the product of two consecutive integers, that is, n (n + 1). The n-th pronic number is twice the n-th triangular number. The first few pronic numbers (sequence A002378 in OEIS) are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 …

These numbers are sometimes called oblong because they are figurate in this way:

**  ***  ****  *****  ******  *******
    ***  ****  *****  ******  *******
         ****  *****  ******  *******
               *****  ******  *******
                      ******  *******
                              *******

Pronic numbers can also be expressed as n² + n. The n-th pronic number is the sum of the first n even integers, as well as the difference between (2n − 1)² and the n-th centered hexagonal number.

All pronic numbers are even, therefore 2 is the only prime pronic number. It is also the only pronic number in the Fibonacci sequence.

The number of off-diagonal entries in a square matrix is always a pronic number.

The value of the Möbius function μ(x) for any pronic number x = n (n + 1), in addition to being computable in the usual way, can also be calculated as

μ(x) = μ(n) μ(n + 1).

The fact that consecutive integers are coprime and that a pronic number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a pronic number is present in only one of its factors. Thus a pronic number is squarefree if and only if n and n + 1 are. The number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n + 1.

[edit] References

  • Conway and Guy, The Book of Numbers. New York: Copernicus, pp.33–34, 1996.
  • Dickson, L. E., History of the Theory of Numbers, Vol. 1: "Divisibility and Primality". New York: Dover, p. 357, 2005.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -