ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Muirhead's inequality - Wikipedia, the free encyclopedia

Muirhead's inequality

From Wikipedia, the free encyclopedia

In mathematics, Muirhead's inequality, also known as the "bunching" method, generalizes the inequality of arithmetic and geometric means.

Contents

[edit] Two preliminary definitions

[edit] The "a-mean"

For any real vector

a=(a_1,\dots,a_n)

define the "a-mean" [a] of nonnegative real numbers x1, ..., xn by

[a]={1 \over n!}\sum_\sigma x_{\sigma_1}^{a_1}\cdots x_{\sigma_n}^{a_n},

where the sum extends over all permutations σ of { 1, ..., n }.

In case a = (1, 0, ..., 0), this is just the ordinary arithmetic mean of x1, ..., xn. In case a = (1/n, ..., 1/n), it is the geometric mean of x1, ..., xn. (When n = 2, this is the Heinz mean.)

[edit] Doubly stochastic matrices

An n × n matrix P is doubly stochastic precisely if both P and its transpose PT are stochastic matrices. A stochastic matrix is a square matrix of nonnegative real entries in which the sum of the entries in each column is 1. Thus, a doubly stochastic matrix is a square matrix of nonnegative real entries in which the sum of the entries in each row and the sum of the entries in each column is 1.

[edit] The inequality

Muirhead's inequality states that [a] ≤ [b] for all xi ≥ 0 if and only if there is some doubly stochastic matrix P for which a = Pb.

The proof makes use of the fact that every doubly stochastic matrix is a weighted average of permutation matrices (Birkhoff-von Neumann theorem).

[edit] Another equivalent condition

Because of the symmetry of the sum, no generality is lost by sorting the exponents into decreasing order:

a_1 \geq a_2 \geq \cdots \geq a_n
b_1 \geq b_2 \geq \cdots \geq b_n

Then the existence of a doubly stochastic matrix P such that a = Pb is equivalent to the following system of inequalities:

a_1 \leq b_1
a_1+a_2 \leq b_1+b_2
a_1+a_2+a_3 \leq b_1+b_2+b_3
\qquad\vdots\qquad\vdots\qquad\vdots\qquad\vdots
a_1+\cdots +a_{n-1} \leq b_1+\cdots+b_{n-1}
a_1+\cdots +a_n=b_1+\cdots+b_n.

(The last one is an equality; the others are weak inequalities.)

The sequence b_1, \ldots, b_n is said to majorize the sequence a_1, \ldots, a_n.

[edit] Symmetric sum-notation tricks

It is useful to use a kind of special notation for the sums. A success in reducing an inequality in this form means that the only condition for testing it is to verify whether one exponent sequence (\alpha_1, \ldots, \alpha_n) majorizes the other one.

\sum_\text{sym} x_1^{\alpha_1} \cdots x_n^{\alpha_n}

This notation requires developing every permutation, developing an expression made of n! monomials, for instance:


\begin{align}
\sum_\text{sym} x^3 y^2 z^0  & {} = x^3 y^2 z^0 + x^3 z^2 y^0 + y^3 x^2 z^0 + y^3 z^2 x^0 + z^3 x^2 y^0 + z^3 y^2 x^0 \\
& {} =  x^3 y^2  + x^3 z^2  + y^3 x^2 + y^3 z^2  + z^3 x^2  + z^3 y^2
\end{align}

[edit] Deriving the arithmetic-geometric mean inequality

Let

a_G = \left( \frac 1 n , \ldots ,  \frac 1 n \right)
a_A = ( 1 , 0, 0, \ldots ,  0 )\,

we have

a_{A1} = 1 > a_{G1} = \frac 1 n \,
a_{A1} + a_{A2} = 1 > a_{G1} + a_{G2} = \frac 2 n\,
\qquad\vdots\qquad\vdots\qquad\vdots\,
a_{A1} + \cdots + a_{An} = a_{G1} + \cdots + a_{Gn} = 1 \,

then

[aA] ≥ [aG]

which is

\frac 1 {n!} (x_1^1 \cdot x_2^0 \cdots x_n^0 + \cdots + x_1^0 \cdots x_n^1) (n-1)! \geq \frac 1 {n!} (x_1 \cdot \cdots \cdot x_n)^{\frac 1 n} n!

yielding the inequality.

[edit] Examples

Suppose you want to prove that x2 + y2 ≥ 2xy by using bunching (Muirhead's inequality): We transform it in the symmetric-sum notation:

\sum_ \mathrm{sym} x^2 y^0 \ge \sum_\mathrm{sym} x^1 y^1

The sequence (2, 0) majorizes the sequence (1, 1), thus the inequality holds by bunching. Again,

x^3+y^3+z^3 \ge 3 x y z
\sum_ \mathrm{sym} x^3 y^0 z^0 \ge \sum_\mathrm{sym} x^1 y^1 z^1

which yields

 2 x^3 + 2 y^3 + 2 z^3 \ge 6 x y z

the sequence (3, 0, 0) majorizes the sequence (1, 1, 1), thus the inequality holds by bunching.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -