ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Mean curvature - Wikipedia, the free encyclopedia

Mean curvature

From Wikipedia, the free encyclopedia

In mathematics, the mean curvature H of a surface S is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

The concept was introduced by Sophie Germain in her work on elasticity theory. [1][2]

Contents

[edit] Definition

Let p be a point on the surface S. Consider all curves Ci on S passing through the point p on the surface. Every such Ci has an associated curvature Ki given at p. Of those curvatures Ki, at least one is characterized as maximal κ1 and one as minimal κ2, and these two curvatures κ12 are known as the principal curvatures of S.

The mean curvature at p\in S is the average of curvatures (Spivak 1999, Volume 3, Chapter 2), hence the name:

H = {1 \over 2} (\kappa_1 + \kappa_2).

More generally (Spivak 1999, Volume 4, Chapter 7), for a hypersurface T the mean curvature is given as

H=\frac{1}{n}\sum_{i=1}^{n} \kappa_{i}.

More abstractly, the mean curvature is (\frac{1}{n} times) the trace of the second fundamental form (or equivalently, the shape operator).

Additionally, the mean curvature H may be written in terms of the covariant derivative \nabla as

H\vec{n} = g^{ij}\nabla_i\nabla_j X,

using the Gauss-Weingarten relations, where X(x,t) is a family of smoothly embedded hypersurfaces, \vec{n} a unit normal vector, and gij the metric tensor.

A surface is a minimal surface if and only if the mean curvature is zero. Furthermore, a surface which evolves under the mean curvature of the surface S, is said to obey a heat-type equation called the mean curvature flow equation.

The sphere is the only surface of constant positive mean curvature without boundary or singularities.

[edit] Surfaces in 3D space

For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface:

2 H = \nabla \cdot \hat n

where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "away" from the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated.

For the special case of a surface defined as a function of two coordinates, eg z = S(x,y), and using downward pointing normal the (doubled) mean curvature expression is

\begin{align}2 H & = \nabla \cdot \left(\frac{\nabla(S - z)}{|\nabla(S - z)|}\right) \\
& = \nabla \cdot \left(\frac{\nabla S}
{\sqrt{1 + (\nabla S)^2}}\right) \\
& = 
\frac{
\left(1 + \left(\frac{\partial S}{\partial x}\right)^2\right) \frac{\partial^2 S}{\partial y^2} - 
2 \frac{\partial S}{\partial x} \frac{\partial S}{\partial y} \frac{\partial^2 S}{\partial x \partial y} + 
\left(1 + \left(\frac{\partial S}{\partial y}\right)^2\right) \frac{\partial^2 S}{\partial x^2}
}{\left(1 + \left(\frac{\partial S}{\partial x}\right)^2 + \left(\frac{\partial S}{\partial y}\right)^2\right)^{3/2}}.
\end{align}

If the surface is additionally known to be axisymmetric with z = S(r),

2 H = \frac{\frac{\partial^2 S}{\partial r^2}}{\left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{3/2}} + \frac{\frac{\partial S}{\partial r}}{r \left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{1/2}}.

[edit] Mean curvature in fluid mechanics

An alternate definition is occasionally used in fluid mechanics to avoid factors of two:

Hf = (κ1 + κ2).

This results in the pressure according to the Young-Laplace equation inside an equilibrium spherical droplet being surface tension times Hf; the two curvatures are equal to the reciprocal of the droplet's radius: κ1 = κ2 = r − 1.

[edit] Minimal surfaces

A rendering of Costa's minimal surface.
A rendering of Costa's minimal surface.
Main article: Minimal surface

A minimal surface is a surface which has zero mean curvature at all points. Classic examples include the catenoid, helicoid and Enneper surface. Recent discoveries include Costa's minimal surface and the Gyroid.

An extension of the idea of a minimal surface are surfaces of constant mean curvature.

[edit] See also

[edit] Notes

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -