ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Gauss–Codazzi equations - Wikipedia, the free encyclopedia

Gauss–Codazzi equations

From Wikipedia, the free encyclopedia

In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded hypersurfaces of pseudo-Riemannian manifolds: see Gauss-Codazzi equations (relativity).

In the classical geometry of surfaces, the Gauss–Codazzi–Mainardi equations consist of a pair of related equations. The first equation, sometimes called the Gauss equation relates the intrinsic curvature (or Gauss curvature) of the surface to the derivatives of the Gauss map, via the second fundamental form. This equation is the basis for Gauss's theorema egregium.[1] The second equation, sometimes called the Codazzi-Mainardi equation, is a structural condition on the second derivatives of the Gauss map.[2] It incorporates the extrinsic curvature (or mean curvature) of the surface. The equations show that the components of the second fundamental form and its derivatives along the surface completely classify the surface up to a Euclidean transformation, a theorem of Ossian Bonnet.[3]

Contents

[edit] Formal statement

Let i : MP be an n-dimensional embedded submanifold of a Riemannian manifold P of dimension n+p. There is a natural inclusion of the tangent bundle of M into that of P by the pushforward, and the cokernel is the normal bundle of M:

0\rightarrow T_xM \rightarrow T_xP|_M \rightarrow T_x^\perp M\rightarrow 0.

The metric splits this short exact sequence, and so

TP|_M = TM\oplus T^\perp M.

Relative to this splitting, the Levi-Civita connection ∇′ of P decomposes into tangential and normal components. For each X ∈ TM and vector field Y on M,

\nabla'_X Y = \top(\nabla'_X Y) + \bot(\nabla'_X Y).

Let

\nabla_X Y = \top(\nabla'_X Y),\quad \alpha(X,Y) = \bot(\nabla'_X Y).

Gauss' formula[4] now asserts that ∇X is the Levi-Civita connection for M, and α is a symmetric vector-valued form with values in the normal bundle.

An immediate corollary is the Gauss equation. For X, Y, Z, W ∈ TM,

\langle R'(X,Y)Z, W\rangle = \langle R(X,Y)Z, W\rangle + \langle \alpha(X,Z), \alpha(Y,W)\rangle -\langle \alpha(Y,Z), \alpha(X,W)\rangle

where R′ is the Riemann curvature tensor of P and R is that of M.

The Weingarten equation is an analog of the Gauss formula for a connection in the normal bundle. Let X ∈ TM and ξ a normal vector field. Then decompose the ambient covariant derivative of ξ along X into tangential and normal components:

\nabla_X\xi=\top (\nabla_X\xi) + \bot(\nabla_X\xi) = -A_\xi(X) + D_X(\xi).

Then

  1. Weingarten's equation: \langle A_\xi X, Y\rangle = \langle \alpha(X,Y), \xi\rangle
  2. DX is a metric connection in the normal bundle.

There are thus a pair of connections: ∇, defined on the tangent bundle of M; and D, defined on the normal bundle of M. These combine to form a connection on any tensor product of copies of TM and TM. In particular, they defined the covariant derivative of α:

(\tilde{\nabla}_X \alpha)(Y,Z) = D_X\left(\alpha(Y,Z)\right) - \alpha(\nabla_X Y,Z) - \alpha(Y,\nabla_X Z).

The Codazzi-Mainardi equation is

\bot\left(R'(X,Y)Z\right) = (\tilde{\nabla}_X\alpha)(Y,Z) - (\tilde{\nabla}_Y\alpha)(X,Z).

[edit] Statement of classical equations

In classical differential geometry of surfaces, the Codazzi-Mainardi equations are expressed via the second fundamental form:

e_v-f_u=e\Gamma_{12}^1 + f(\Gamma_{12}^2-\Gamma_{11}^1) - g\Gamma_{11}^2
f_v-g_u=e\Gamma_{22}^1 + f(\Gamma_{22}^2-\Gamma_{12}^1) - g\Gamma_{12}^2

[edit] Derivation of classical equations

The second derivatives of a parametric surface may be expressed in the basis {Xu,Xv,N} with the Christoffel symbols and the second fundamental form.

X_{uu}=\Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + eN
X_{uv}=\Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + fN
X_{vv}=\Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + gN

Clairaut's theorem states that partial derivatives commute:

\left(X_{uu}\right)_v=\left(X_{uv}\right)_u

If we differentiate Xuu with respect to v and Xuv with respect to u, we get:

\left(\Gamma_{11}^1\right)_v X_u + \Gamma_{11}^1 X_{uv} + \left(\Gamma_{11}^2\right)_v X_v + \Gamma_{11}^2 X_{vv} + e_v N + e N_v = \left(\Gamma_{12}^1\right)_u X_u + \Gamma_{12}^1 X_{uu} + \left(\Gamma_{12}^2\right)_u X_v + \Gamma_{12}^2 X_{uv} + f_u N + f N_u

Now substitute the above expressions for the second derivatives and equate the coefficients of N:

 f \Gamma_{11}^1 + g \Gamma_{11}^2 + e_v = e \Gamma_{12}^1 + f \Gamma_{12}^2 + f_u

Rearranging this equation gives the first Codazzi-Mainardi equation. The second equation may be derived similarly.

[edit] History

First were discovered by Peterson[5], then Mainardi[6] and Delfino Codazzi (1867) [7].

[edit] See also

[edit] External links

[edit] Notes

  1. ^ Gauss (1828).
  2. ^ Named for Gaspare Mainardi (1856) and Delfino Codazzi (1868-1869), who independently derived the result. Cf. Kline (1972), p. 885.
  3. ^ Bonnet (1867).
  4. ^ Terminology from Spivak, Volume III.
  5. ^ Peterson, K. M. "Über die Biegung der Flächen." Dorpat. Kandidatenschrift. 1853.
  6. ^ Mainardi, G. "Sulle coordinate curvilinee d'una superfice dello spazio." Giornale del R. Istituto Lombardo 9, 385-398, 1856.
  7. ^ Codazzi, D. "Sulle coordinate curvilinee d'una superficie dello spazio." Ann. math. pura applicata 2, 101-19, 1868-1869.

[edit] References

  • Bonnet, Ossian (1867). "Memoire sur la theorie des surfaces applicables sur une surface donnee". Jour. de l'Ecole Poly. 25: 31-151. 
  • do Carmo, Manfredo Perdigao (1994). Riemannian Geometry. 
  • Gauss, Carl Friedrich (1828). "Disquitiones Generales circa Superficies Curvas" (in Latin). Comm. Soc. Gott. 6.  ("General Discussions about Curved Surfaces")
  • Codazzi, Delfino (1868-1869). "Sulle coordinate curvilinee d'una superficie dello spazio". Ann. math. pura applicata 2: 101-19. 
  • Kline, Morris (1972). Mathematical Thought from Ancient to Modern Times. Oxford University Press. ISBN 0-19-506137-3. 
  • Mainardi, Gaspare (1856). "Su la teoria generale delle superficie". Giornale dell' Istituto Lombardo 9: 385-404. 


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -