ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
List of equations in classical mechanics - Wikipedia, the free encyclopedia

List of equations in classical mechanics

From Wikipedia, the free encyclopedia

This page gives a summary of important equations in classical mechanics.

Contents

[edit] Nomenclature

a = acceleration (m/s²)
g = gravitational field strength/acceleration in free-fall (m/s²)
F = force (N = kg m/s²)
Ek = kinetic energy (J = kg m²/s²)
Ep = potential energy (J = kg m²/s²)
m = mass (kg)
p = momentum (kg m/s)
s = displacement (m)
R = radius (m)
t = time (s)
v = velocity (m/s)
v0 = velocity at time t=0
W = work (J = kg m²/s²)
τ = torque (m N, not J) (torque is the rotational form of force)
s(t) = position at time t
s0 = position at time t=0
runit = unit vector pointing from the origin in polar coordinates
θunit = unit vector pointing in the direction of increasing values of theta in polar coordinates

Note: All quantities in bold represent vectors.

[edit] Defining equations

[edit] Center of mass

In the discrete case:

\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \sum_{i = 0}^{n} m_i \mathbf{s}_i

where n is the number of mass particles.

Or in the continuous case:

\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \int \rho(\mathbf{s}) dV

where ρ(s) is the scalar mass density as a function of the position vector

[edit] Velocity

\mathbf{v}_{\mbox{average}} = {\Delta \mathbf{d} \over \Delta t}
\mathbf{v} = {d\mathbf{s} \over dt}

[edit] Acceleration

\mathbf{a}_{\mbox{average}} = \frac{\Delta\mathbf{v}}{\Delta t}
\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2}
  • Centripetal Acceleration
 |\mathbf{a}_c | = \omega^2 R = v^2 / R

(R = radius of the circle, ω = v/R angular velocity)

[edit] Momentum

\mathbf{p} = m\mathbf{v}

[edit] Force

 \sum \mathbf{F} = \frac{d\mathbf{p}}{dt} = \frac{d(m\mathbf{v})}{dt}
 \sum \mathbf{F} = m\mathbf{a} \quad\   (Constant Mass)

[edit] Impulse

 \mathbf{J} = \Delta \mathbf{p} = \int \mathbf{F} dt
 \mathbf{J} = \mathbf{F} \Delta t \quad\
  if F is constant

[edit] Moment of inertia

For a single axis of rotation: The moment of inertia for an object is the sum of the products of the mass element and the square of their distances from the axis of rotation:

I = \sum r_i^2 m_i =\int_M r^2 \mathrm{d} m = \iiint_V r^2 \rho(x,y,z) \mathrm{d} V

[edit] Angular momentum

 |L| = mvr \quad\   if v is perpendicular to r

Vector form:

 \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I}\, \omega

(Note: I can be treated like a vector if it is diagonalized first, but it is actually a 3×3 matrix - a tensor of rank-2)

r is the radius vector.

[edit] Torque

 \sum \boldsymbol{\tau} = \frac{d\mathbf{L}}{dt}
 \sum \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F} \quad

if |r| and the sine of the angle between r and p remains constant.

 \sum \boldsymbol{\tau} = \mathbf{I} \boldsymbol{\alpha}

This one is very limited, more added later. α = dω/dt

[edit] Precession

Omega is called the precession angular speed, and is defined:

 \boldsymbol{\Omega} = \frac{wr}{I\boldsymbol{\omega}}

(Note: w is the weight of the spinning flywheel)

[edit] Energy

for m as a constant:

 \Delta E_k = \int \mathbf{F}_{\mbox{net}} \cdot d\mathbf{s} = \int \mathbf{v} \cdot d\mathbf{p} = \begin{matrix}\frac{1}{2}\end{matrix} mv^2 - \begin{matrix}\frac{1}{2}\end{matrix} m{v_0}^2 \quad\
 \Delta E_p = mg\Delta h \quad\  \,\! in field of gravity

[edit] Central force motion

\frac{d^2}{d\theta^2}\left(\frac{1}{\mathbf{r}}\right) + \frac{1}{\mathbf{r}} = -\frac{\mu\mathbf{r}^2}{\mathbf{l}^2}\mathbf{F}(\mathbf{r})

[edit] Useful derived equations

[edit] Equations of motion (constant acceleration)

These equations can be used only when acceleration is constant. If acceleration is not constant then calculus must be used.

v = v_0+at \,
s = \frac {1} {2}(v_0+v) t
s = v_0 t + \frac {1} {2} a t^2
v^2 = v_0^2 + 2 a s \,
s = vt - \frac {1} {2} a t^2

These equations can be adapted for angular motion, where angular acceleration is constant:

 \omega _1 = \omega _0 + \alpha t \,
 \theta = \frac{1}{2}(\omega _0 + \omega _1)t
 \theta = \omega _0 t + \frac{1}{2} \alpha t^2
 \omega _1^2 = \omega _0^2 + 2\alpha\theta
 \theta = \omega _1 t - \frac{1}{2} \alpha t^2
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -