ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Euler product - Wikipedia, the free encyclopedia

Euler product

From Wikipedia, the free encyclopedia

In mathematics, an Euler product is an infinite product expansion, indexed by prime numbers p, of a Dirichlet series. The name arose from the case of the Riemann zeta-function, where such a product representation was proved by Euler.

In general, a Dirichlet series of the form

\sum_{n} a(n)n^{-s}\,

where a(n) is a multiplicative function of n may be written as

\prod_{p} P(p,s)\,

where P(p,s) is the sum

1+a(p)p^{-s} + a(p^2)p^{-2s} + \cdots .

In fact, if we consider these as formal generating functions, the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be multiplicative: this says exactly that a(n) is the product of the a(pk) when n factors as the product of the powers pk of distinct primes p.

An important special case is that in which a(n) is totally multiplicative, so that P(p,s) is a geometric series. Then

P(p,s)=\frac{1}{1-a(p)p^{-s}}

as is the case for the Riemann zeta-function, where a(n) = 1), and more generally for Dirichlet characters.

In practice all the important cases are such that the infinite series and infinite product expansions are absolutely convergent in some region

Re(s) > C

that is, in some right half-plane in the complex numbers. This already gives some information, since the infinite product, to converge, must give a non-zero value; hence the function given by the infinite series is not zero in such a half-plane.

In the theory of modular forms it is typical to have Euler products with quadratic polynomials in the denominator here. The general Langlands philosophy includes a comparable explanation of the connection of polynomials of degree m, and the representation theory for GLm.

[edit] Examples of Euler products

The Euler product attached to the Riemann zeta function, using also the sum of the geometric series, is

 \zeta(s) = \sum_{n=1}^{\infty}n^{-s} = \prod_{p} \Big(\sum_{n=0}^{\infty}p^{-ns}\Big) = \prod_{p} (1-p^{-s})^{-1} .

An Euler product for the Möbius function μ(n) is

 \frac{1}{\zeta(s) }= \prod_{p} (1-p^{-s})= \sum_{n=1}^{\infty}\mu (n)n^{-s} .

Further products derived from the zeta function are

 \frac{\zeta(2s)}{\zeta(s) }= \prod_{p} (1+p^{-s})^{-1} = \sum_{n=1}^{\infty}\lambda (n)n^{-s}

where λ(n) = ( − 1)Ω(n) is the Liouville function, and

 \frac{\zeta(s)}{\zeta(2s) }= \prod_{p} (1+p^{-s}) = \sum_{n=1}^{\infty} |\mu(n)|n^{-s} .

Similarly

 \frac{\zeta(s)^2}{\zeta(2s)} = \prod_{p} \Big(\frac{1+p^{-s}}{1-p^{-s}}\Big) = 
\prod_{p} (1+2p^{-s}+2p^{-2s}+\cdots) =
\sum_{n=1}^{\infty}2^{\omega(n)} n^{-s}

where ω(n) counts the number of distinct prime factors of n and 2ω(n) the number of square-free divisors.

If χ(n) is a Dirichlet character of conductor N, so that χ is totally multiplicative and χ(n) only depends on n modulo N, and χ(n) = 0 if n is not coprime to N then

 \prod_{p} (1- \chi(p) p^{-s})^{-1} = \sum_{n=1}^{\infty}\chi(n)n^{-s} .

Here it is convenient to omit the primes p dividing the conductor N from the product.

Ramanujan in his notebooks tried to generalize the Euler product for Zeta function in the form:

 \prod_{p} (x-p^{-s})\approx \frac{1}{Li_{s} (x)} s > 1

where Li_s (x) is the Polylogarithm for x=1 the product above is just 1 / ζ(s)

searching for a way to obtain prime powers as roots of a certain function f(x, s).

[edit] References

  • G. Polya, Induction and Analogy in Mathematics Volume 1 (1954) Princeton University Press L.C. Card 53-6388 (A very accessible English translation of Euler's memoir regarding this "Most Extraordinary Law of the Numbers" appears starting on page 91)
  • Tom M. Apostol, Introduction to Analytic Number Theory, (1976) Springer-Verlag, New York. ISBN 0-387-90163-9 (Provides an introductory discussion of the Euler product in the context of classical number theory.)
  • G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford (1979) ISBN 0-19-853171-0 (Chapter 17 gives further examples.))'
  • 'Ramanujan lost notebook'[[1]]
  • Euler product on PlanetMath
  • Eric W. Weisstein, Euler Product at MathWorld.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -