Polylogarithm
From Wikipedia, the free encyclopedia
The polylogarithm (also known as de Jonquière's function) is a special function Lis(z) that is defined by the sum
It is in general not an elementary function, unlike the related logarithm function. The above definition is valid for all complex numbers s and z where |z| < 1. The polylogarithm is defined over a larger range of z than the above definition allows by the process of analytic continuation.
The special case s = 1 involves the ordinary natural logarithm (Li1(z) = −ln(1−z)) while the special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence's function) and trilogarithm respectively. The name of the function comes from the fact that it may alternatively be defined as the repeated integral of itself, namely that
so that the dilogarithm is an integral of the logarithm, and so on. For negative integer values of s, the polylogarithm is a rational function.
The polylogarithm also arises in the closed form of the integral of the Fermi-Dirac distribution and the Bose-Einstein distribution and is sometimes known as the Fermi-Dirac integral or the Bose-Einstein integral. Polylogarithms should not be confused with polylogarithmic functions nor with the offset logarithmic integral which has a similar notation.
Contents |
[edit] Properties
In the important case where the parameter s is an integer, it will be represented by n (or −n when negative). It is often convenient to define μ = ln(z) where ln(z) is the principal branch of the complex logarithm Ln(z) so that −π < Im(μ) ≤ π. Also, all exponentiation will be assumed to be single valued: zs = exp(s ln(z)).
Depending on the parameter s, the polylogarithm may be multi-valued. The principal branch of the polylogarithm is chosen to be that for which Lis(z) is real for z real, 0 ≤ z ≤ 1 and is continuous except on the positive real axis, where a cut is made from z = 1 to ∞ such that the cut puts the real axis on the lower half plane of z. In terms of μ, this amounts to −π < arg(−μ) ≤ π. The fact that the polylogarithm may be discontinuous in μ can cause some confusion.
For z real and z ≥ 1 the imaginary part of the polylogarithm is (Wood 1992):
Going across the cut, if δ is an infinitesimally small positive real number, then:
The derivatives of the polylogarithm are:
[edit] Particular values
See also the "Relationship to other functions" section below.
For integer values of s, we have the following explicit expressions:
The polylogarithm for all negative integer values of s can be expressed as a ratio of polynomials in z and are therefore rational functions (See series representations below). Some particular expressions for half-integer values of the argument are:
where ζ is the Riemann zeta function. No similar formulas of this type are known for higher orders (Lewin, 1991 p2.)
[edit] Alternate expressions
- The integral of the Bose-Einstein distribution is expressed in terms of a polylogarithm:
- This converges for Re(s) > 0 and all z except for z real and ≥ 1. The polylogarithm in this context is sometimes referred to as a Bose integral or a Bose-Einstein integral.
- The integral of the Fermi-Dirac distribution is also expressed in terms of a polylogarithm:
- This converges for Re(s) > 0 and all z except for z real and < (−1). The polylogarithm in this context is sometimes referred to as a Fermi integral or a Fermi-Dirac integral. (GSL)
- The polylogarithm may be rather generally represented by a Hankel contour integral (Whittaker & Watson § 12.22, § 13.13). As long as the t = μ pole of the integrand does not lie on the non-negative real axis, and s ≠ 1, 2, 3, …, we have:
- where H represents the Hankel contour. The integrand has a cut along the real axis from zero to infinity, with the real axis being on the lower half of the sheet (Im(t) ≤ 0). For the case where μ is real and non-negative, we can simply add the limiting contribution of the pole:
- where R is the residue of the pole:
- The square relationship is easily seen from the duplication formula (see also (Clunie), (Schrödinger)):
- Note that Kummer's function obeys a very similar duplication formula. This is a special case of the multiplication formula, for any integer p:
- which can be proven using the summation definition of the polylogarithm and the orthogonality of the exponential terms (e.g. see Discrete Fourier transform).
[edit] Relationship to other functions
- For z = 1 the polylogarithm reduces to the Riemann zeta function
- The polylogarithm is related to Dirichlet eta function and the Dirichlet beta function:
- The polylogarithm is equivalent to the Fermi-Dirac integral (GSL)
- The polylogarithm is a special case of the Lerch Transcendent (Erdélyi 1981 § 1.11-14)
- The polylogarithm is related to the Hurwitz zeta function by:
- Using the relationship between the Hurwitz zeta function and the Bernoulli polynomials:
- The polylogarithm with pure imaginary μ may be expressed in terms of Clausen functions Cis(θ) and Sis(θ) (Lewin (1958) Ch. VII § 1.4), (Abramowitz & Stegun § 27.8)
- The Inverse tangent integral Tis(z) (Lewin, 1958 Ch. VII § 1.2) can be expressed in terms of polylogarithms:
- The Legendre chi function χs(z) (Lewin, 1958 Ch. VII § 1.1), (Boersma, 1992) can be expressed in terms of polylogarithms:
- The polylogarithm may be expressed as a series of Debye functions Zn(z) (Abramowitz & Stegun § 27.1, 27.7.7)
[edit] Series representations
- We may represent the polylogarithm as a power series about μ = 0 as follows: (Robinson, 1951) Consider the Mellin transform:
- As noted above, the polylogarithm may be extended to negative values of the parameter s using a Hankel contour integral (Wood 1992) (Gradshteyn & Ryzhik § 9.553):
- For negative integer s, the polylogarithm may be expressed as a series involving the Eulerian numbers
- Another explicit formula for negative integer s is (Wood 1992):
[edit] Limiting behavior
The following limits hold for the polylogarithm (Wood 1992):
[edit] Dilogarithm
The dilogarithm is just the polylogarithm with s = 2. An alternate integral expression for the dilogarithm is: (Abramowitz & Stegun § 27.7)
A source of confusion is that some computer algebra systems define the dilogarithm as dilog(z) = Li2(1 − z).
The Abel identity for the dilogarithm is given by
- .
This is immediately seen to hold for either x = 0 or y = 0, and for general arguments is then easily verified by differentiation ∂/∂x ∂/∂y. For y = 1 − x the identity reduces to Euler's reflection formula
where Li2(1) = 1⁄6 π2 has been used.
In terms of the new variables u = x / (1 − y), v = y / (1 − x) the Abel identity reads
- ,
which corresponds to the Pentagon Identity given by (Rogers).
History note: Don Zagier remarked that "The dilogarithm is the only mathematical function with a sense of humor."
[edit] Polylogarithm ladders
Leonard Lewin discovered a remarkable and broad generalization of a number of classical relationships on the polylogarithm for special values. These are now called polylogarithm ladders. Define as the reciprocal of the golden ratio. Then two simple examples of results from ladders include
given by (Coxeter, 1935) and
given by Landen. Polylogarithm ladders occur naturally and deeply in K-theory and algebraic geometry. Polylogarithm ladders provide the basis for the rapid computations of various mathematical constants by means of the BBP algorithm.
[edit] Monodromy
The polylogarithm has two branch points; one at z = 1 and another at z = 0. The second branch point, at z = 0, is not visible on the main sheet of the polylogarithm; it becomes visible only when the polylog is analytically continued to its other sheets. The monodromy group for the polylogarithm consists of the homotopy classes of loops that wind around the two branch points. Denoting these two by m0 and m1, the monodromy group has the group presentation
For the special case of the dilogarithm, one also has that wm0 = m0w, and the monodromy group becomes the Heisenberg group (identifying m0,m1 and w with x,y,z). (Vepstas, 2007)
[edit] References
- Milton Abramowitz and Irene A. Stegun, eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. ISBN 0-486-61272-4.
- Bailey, David; Borwein, Peter B., and Plouffe, Simon (April 1997). "On the Rapid Computation of Various Polylogarithmic Constants". Mathematics of Computation 66 (218): 903-913.
- Bailey, D. H. and Broadhurst, D. J. (June 20, 1999). A Seventeenth-Order Polylogarithm Ladder (PDF). Retrieved on November 1, 2005.
- Boersma, J.; Dempsey, J. P. (1992). "On the evaluation of Legendre's chi-function". Mathematics of Computation 59 (199): 157-163.
- Borwein, J. M.; Bradley, D. M., Broadhurst, D. J., and Lisonek, P. (1998). "Special Values of Multidimensional Polylogarithms". CECM 106.
- Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; and Lisonek, P. (2001). "Special Values of Multiple Polylogarithms". Transactions of the American Mathematical Society 353 (3): 907-941.
- Berndt, B. C. (1994). Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 323-326. ISBN 0-387-94109-6.
- Clunie, J. (1954). "On Bose-Einstein functions". Proceedings of the Physical Society, Section A 67: 632-636.
- Coxeter, H.S.M. (1935). "The functions of Schlafli and Lobatschefsky". Quarterly Journal of Mathematics (Oxford) 6: 13-29.
- Cvijović, D. and Klinowski, J (1997). Continued-fraction expansions for the Riemann zeta function and polylogarithms. Proc. Amer.Math. Soc.125(1997),2543-2550.
- Cvijović, D. (2006). New integral representations of the polylogarithm function. Royal Society. Retrieved on December 15, 2006.
- Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1981). Higher Transcendental Functions, Vol. 1. New York: Krieger.
- Fornberg, B.; Kölbig, K. S. (1975). "Complex zeros of the Jonquiére or polylogarithm function". Mathematics of Computation 29 (130): 582-599.
- Gradshteyn, I.S. and Ryzhik, I.M. (1980). Tables of Integrals, Series, and Products. Academic Press, New York. ISBN 0-12-294760-6.
- GNU Scientific Library. Reference Manual. Retrieved on November 1, 2005.
- Jahnke, E. and Emde, F. (1945). Tables of Functions with Formulae and Curves. Dover.
- Kölbig, K. S.; Mignaco, J. A. , and Remiddi, E. (1970). "On Nielsen's generalized polylogarithms and their numerical calculation". BIT 10: 38-74.
- Lewin, L. (1958). Dilogarithms and Associated Functions. Macdonald - London.
- Lewin, L. (1981). Polylogarithms and Associated Functions. North-Holland-New York. ISBN 0-444-00550-1.
- Lewin, Leonard (Ed.) (1991). Structural Properties of Polylogarithms. Amer. Math. Soc. - Providence, RI. ISBN 0-8218-1634-9.
- McDougall, J.; Stoner, E. C. (1939). "The computation of Fermi-Dirac functions". Philosophical Transactions of the Royal Society, Series A 237: 67-104.
- Markman, B. (1965). "The Riemann Zeta Function". BIT 5: 138-141.
- Nielsen, N. (1909). Der Euler'sche Dilogarithms. Halle - Leipzig, Germany.
- Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. (1990). Integrals and Series, Vol. 3 (More Special Functions): The Generalized Zeta Function, Bernoulli Polynomials, Euler Polynomials, and Polylogarithms. Gordon and Breach - Newark, NJ. (see § 1.2, pp 23-24)
- Robinson, J. E. (1951). "Note on the Bose-Einstein integral functions". Physical Review, Series 2 83: 678-679.
- Rogers, L. J. (1907). "On Function Sum Theorems connected with the series ". Proceedings of the London Mathematical Society 4: 169-189.
- Schrödinger, E. (1952). Statistical Thermodynamics. Cambridge.
- Truesdell, C. (1945). "On a function which occurs in the theory of the structure of polymers". Annals of Mathematics, Series 2 46 (1): 144-1457.
- Vepstas, Linas (February 2007). "An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions". ArXiv math.CA (math.CA/0702243).
- Whittaker, E. T., and Watson, G. N. (1962). A Course of Modern Analysis, Fourth edition, Cambridge University Press.
- Wood, David C. (June, 1992). Technical Report 15-92. University of Kent computing Laboratory, University of Kent, Canterbury, UK. Retrieved on November 1, 2005.