ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
epsilon nought - Wikipedia, the free encyclopedia

epsilon nought

From Wikipedia, the free encyclopedia

The correct title of this article is ε0. It features superscript or subscript characters that are substituted or omitted because of technical limitations.

In mathematics, ε0 is the smallest transfinite ordinal number which cannot be reached from 0 with a finite number of operations of ordinal addition and the operation α→ωα, where ω is the smallest transfinite ordinal. As such it is a limit ordinal. It is given by

\epsilon_0 = \omega^{\omega^{\omega^{\cdots}}},

which stands for the limit of the sequence

\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \cdots

It has Cantor normal form

\epsilon_0 = \omega^{\epsilon_0}.

but this does not fully define it. The γ-th ordinal (counting from zero) α such that α = ωα is written \varepsilon_\gamma. These are called the epsilon numbers. The smallest of these numbers is ε0.

The ordinal ε0 is still countable (there exist uncountable ordinals). This ordinal is very important in many induction proofs, because for many purposes, transfinite induction is only required up to ε0 (as in Gentzen's consistency proof and the proof of Goodstein's theorem). Its use by Gentzen to prove the consistency of Peano arithmetic, along with Gödel's second incompleteness theorem, show that Peano arithmetic cannot prove the well-foundedness of this ordering (it is in fact the least ordinal with this property, and as such, in proof-theoretic ordinal analysis, is used as a measure of the strength of the theory of Peano arithmetic).

This was created by the German mathematician Georg Cantor. This ordinal is also called epsilon zero.

Contents

[edit] Rooted trees

Finite rooted trees can be used to represent all ordinals less than ε0 as follows. A finite rooted tree T represents the ordinal \omega^{\alpha_1}+\cdots+\omega^{\alpha_n} where α1≥....≥αn are the ordinals represented by the n≥0 rooted trees obtained by deleting the root of T and the edges joined to it.

[edit] Generalization

If β is any ordinal such that 1 < β < εα, then

\beta^{\epsilon_\alpha} = \epsilon_\alpha.

As stated above,

0, 1, \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots \rightarrow \epsilon_0 \!.

Similarly, we get:

\epsilon_0 + 1, \omega^{\epsilon_0 + 1}, \omega^{\omega^{\epsilon_0 + 1}}, \ldots \rightarrow \epsilon_1 \! and
0, 1, \epsilon_0, \epsilon_0^{\epsilon_0}, \epsilon_0^{\epsilon_0^{\epsilon_0}}, \ldots \rightarrow \epsilon_1 \!.

More generally, for any ordinal \alpha \!:

\epsilon_{\alpha} + 1, \omega^{\epsilon_{\alpha} + 1}, \omega^{\omega^{\epsilon_{\alpha} + 1}}, \ldots \rightarrow \epsilon_{\alpha + 1} \! and
0, 1, \epsilon_{\alpha}, \epsilon_{\alpha}^{\epsilon_{\alpha}}, \epsilon_{\alpha}^{\epsilon_{\alpha}^{\epsilon_{\alpha}}}, \ldots \rightarrow \epsilon_{\alpha + 1} \!.

Also when \lambda \! is any limit ordinal:

\epsilon_{\beta} \rightarrow \epsilon_{\lambda} \! as \beta \rightarrow \lambda \!.

[edit] See also

[edit] References

Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -