ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Ordinal analysis - Wikipedia, the free encyclopedia

Ordinal analysis

From Wikipedia, the free encyclopedia

In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. The field was formed when Gerhard Gentzen used cut elimination to prove, in modern terms, that the proof theoretic ordinal of Peano arithmetic is ε0.

Contents

[edit] Definition

Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient portion of arithmetic to make statements about ordinal notations. The proof theoretic ordinal of such a theory is the smallest recursive ordinal that the theory cannot prove is well founded — the supremum of all ordinals α for which there exists a notation o in Kleene's sense such that T proves that o is an ordinal notation. Equivalently, it is the supremum of all ordinals α such that there exists a recursive relation R on ω (the set of natural numbers) which well-orders it with ordinal α and such that T proves transfinite induction of arithmetical statements for R.

The existence of any recursive ordinal which the theory fails to prove is well ordered follows from the \Sigma^1_1 bounding theorem, as the set of natural numbers which an effective theory proves to be ordinal notations is a \Sigma^0_1 set (see Hyperarithmetical theory). Thus the proof theoretic ordinal of a theory will always be a countable ordinal less than the Church-Kleene ordinal \omega_1^{\mathrm{CK}}.

In practice, the proof theoretic ordinal of a theory is a good measure of the strength of a theory. If theories have the same proof theoretic ordinal they are often equiconsistent, and if one theory has a larger proof theoretic ordinal than another it can often prove the consistency of the second theory.

[edit] Examples

[edit] Theories with proof theoretic ordinal ω2

  • \mathsf{RFA}, rudimentary function arithmetic.
  • \mathsf{I}\Delta_0 (arithmetic with induction on Δ0 predicates) without any axiom asserting that exponentiation is total.

[edit] Theories with proof theoretic ordinal ω3

[edit] Theories with proof theoretic ordinal ωn

  • \mathsf{I}\Delta_0 or \mathsf{EFA} augmented by an axiom ensuring that each element of the nth level \mathcal{E}^n of the Grzegorczyk hierarchy is total.

[edit] Theories with proof theoretic ordinal ωω

[edit] Theories with proof theoretic ordinal ε0

[edit] Theories with proof theoretic ordinal the Feferman-Schütte ordinal Γ0

This ordinal is sometimes considered to be the upper limit for "predicative" theories.

[edit] Theories with proof theoretic ordinal the Bachmann-Howard ordinal

[edit] Theories with larger proof theoretic ordinals

  • \Pi^1_1\mbox{-}\mathsf{CA}_0, Π11 comprehension has a rather large proof theoretic ordinal, which was described by Takeuti in terms of "ordinal diagrams", and which is bounded by ψ0ω) in Buchholz's notation. It is also the ordinal of ID < ω, the theory of finitely iterated inductive definitions.
  • KPM, an extension of Kripke-Platek set theory, has a very large proof theoretic ordinal, which was described by Rathjen (1990).

Most theories capable of describing the power set of the natural numbers have proof theoretic ordinals that are (as of 2008) so large that no explicit combinatorial description has yet been given. This includes second order arithmetic and set theories with powersets. (Kripke-Platek set theory mentioned above is a weak set theory without power sets.)

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -