ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Clopen set - Wikipedia, the free encyclopedia

Clopen set

From Wikipedia, the free encyclopedia

In topology, a clopen set (or closed-open set, a portmanteau word) in a topological space is a set which is both open and closed.

[edit] Examples

In any topological space X, the empty set and the whole space X are both clopen.[1][2]

Now consider the space X which consists of the union of the two intervals [0,1] and [2,3]. The topology on X is inherited as the subspace topology from the ordinary topology on the real line R. In X, the set [0,1] is clopen, as is the set [2,3]. This is a quite typical example: whenever a space is made up of a finite number of disjoint connected components in this way, the components will be clopen.

As a less trivial example, consider the space Q of all rational numbers with their ordinary topology, and the set A of all positive rational numbers whose square is bigger than 2. Using the fact that √2 is not in Q, one can show quite easily that A is a clopen subset of Q. (Note also that A is not a clopen subset of the real line R; it is neither open nor closed in R.)

1. Bartle, Robert G. and Sherbert, Donald R.: Introduction to Real Analysis, 2cd ed. John Wiley & Sons, Inc.1982, 1992, pg 348 regarding the real numbers and the empty set in R

2. Hocking, John G., Young, Gail S.: Topology, Dover Publications, Inc, NY, 1961 pg 5 and 6 regarding topological spaces

[edit] Properties

  • A topological space X is connected if and only if the only clopen sets are the empty set and X.
  • A set is clopen if and only if its boundary is empty.
  • Any clopen set is a union of (possibly infinitely many) connected components.
  • If all connected components of X are open (for instance, if X has only finitely many components, or if X is locally connected), then a set is clopen in X if and only if it is a union of connected components.
  • A topological space X is discrete if and only if all of its subsets are clopen.
  • Using the union and intersection as operations, the clopen subsets of a given topological space X form a Boolean algebra. Every Boolean algebra can be obtained in this way from a suitable topological space: see Stone's representation theorem for Boolean algebras.

[edit] Sources


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -