We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Radioteleskop – Wikipedia

Radioteleskop

aus Wikipedia, der freien Enzyklopädie

Ein Radioteleskop ist ein Messgerät, mit dem astronomische Objekte beobachtet werden, die elektromagnetische Wellen im Spektralbereich der Radiowellen ausstrahlen. Mit einem Radioteleskop betreibt man Radioastronomie.

Inhaltsverzeichnis

[Bearbeiten] Geschichte

Astropeiler auf dem Stockert bei Bad Münstereifel
Astropeiler auf dem Stockert bei Bad Münstereifel

Seitdem im Jahre 1932 die erste außerirdische Radioquelle von Karl Guthe Jansky entdeckt wurde, wurden Radioteleskope zur Beobachtung des Kosmos entwickelt.

Da Janskys Entdeckung zunächst von den Astronomen nicht weiter beachtet wurde, entstand das erste Radioteleskop in Parabolform von Grote Reber, Ingenieur und Funkamateur aus Wheaton, Illinois. In Deutschland entstand das erste Radioteleskop Astropeiler im Jahr 1956 bei Bad Münstereifel, seit 1999 unter Denkmalschutz.

Erste, nach Westen gerichtete deutsche Radar-Systeme zur Luftraumüberwachung lieferten immer dann Fehlalarme, wenn das Sternbild Schwan (Cygnus) am Horizont auftauchte - die dort befindliche Radioquelle Cygnus A war dafür „verantwortlich“.
Im Jahr 1946 entdeckte eine Forschungsgruppe am Royal Radar Establishment in Malvern (England), daß von einer winzigen Region im Sternbild Schwan intensive Radiostrahlung ausgeht[1].

[Bearbeiten] Technik

Die meisten Radioteleskope sind parabolisch geformte Metallflächen, die als Hohlspiegel verwendet werden, welche die Radiowellen in einer Antenne sammeln. Heutige Radioteleskope bestehen oft aus mehreren solcher Parabolantennen (Arrays) sowie der Auswertungsstation. Die Antennen eines Arrays werden zusammengekoppelt, so dass sich effektiv eine Antenne mit größerem Durchmesser ergibt. Diese Technik kann auch über das Array hinaus auf den gesamten Globus ausgedehnt werden: Über die gesamte Erde verteilte Radioteleskope können gleichzeitig dieselbe Quelle beobachten. Wenn man ihre Signale koppelt (korreliert), bekommt man durch die Auswertung der Interferenzen, die aus dieser Kopplung gewonnen werden, effektiv ein Radioteleskop mit dem gleichen Durchmesser wie der Abstand zwischen den Teleskopen. Dadurch kann die Winkelauflösung der Radioteleskope erheblich erhöht werden. Heutige Radioteleskope erzielen eine Auflösung, die mit der von optischen Teleskopen vergleichbar ist.

Typische Radioteleskop-Array (Ryle Telescope Interferometer, Universität Cambridge)
Typische Radioteleskop-Array (Ryle Telescope Interferometer, Universität Cambridge)

Man unterscheidet bei Radioteleskopen zwischen unbeweglichen und beweglichen Teleskopen. Die unbeweglichen Teleskope können in ihrer Ausrichtung nicht gedreht werden, ihre Parabolantenne richten sie meist auf den Zenit (zum Beispiel das Arecibo-Teleskop, welches fest in einer Niederung errichtet ist). Bewegliche Radioteleskope können gedreht werden, sodass sie in die gesamte Hemisphäre „schauen“ können.

Die Größe eines Radioteleskops ist jedoch nich allein entscheidend für seine Verwendbarkeit, auch die Empfindlichkeit, mit der es Strahlung detektieren kann, und der Wellenlängenbereich, den es abdecken kann, ist wichtig. Während die großen Teleskope nur Wellenlängen im Meter- und Zentimeterbereich beobachten können, „hören“ kleinere Teleskope, wie das 30-m-Teleskop vom Institut für Radioastronomie im Millimeterbereich (IRAM) in Spanien, das 3-m-Teleskop KOSMA in der Schweiz im Millimeterbereich oder das 12-m-Teleskop APEX (betrieben in der chilenischen Atacama-Wüste vom Max-Planck-Institut für Radioastronomie, Millimeter- und Submillimeterwellen) in kürzeren Wellenlängenbereichen.

Radioteleskope werden neben der Beobachtung von Himmelskörpern auch benutzt, um Daten von entfernten Raumsonden zu empfangen oder Befehle an diese versenden oder, um nach außerirdischen Intelligenzen zu suchen (Siehe Projekt SETI).

[Bearbeiten] Herausragende Anlagen

Very Large Array, New Mexico
Very Large Array, New Mexico

Die größten Radioteleskope der Welt sind das russische RATAN 600 in Selentschukskaja (Republik Karatschai-Tscherkessien), und die Anlage in Arecibo (Arecibo-Observatorium). Das größte deutsche (und weltweit zweitgrößte bewegliche) Radioteleskop ist das Radioteleskop Effelsberg in einem Tal bei Effelsberg in der Eifel, ein bewegliches Teleskop mit 100 m Durchmesser, das vom Max-Planck-Institut für Radioastronomie in Bonn betrieben wird. Das größte bewegliche Radioteleskop der Welt ist das 100 x 110 m große Robert C. Byrd Green Bank Telescope des Green-Bank-Observatoriums in West Virginia, USA.

Das größte Radioteleskop für Millimeterwellen ist das 50 m große Large Millimeter Telescope in Puebla, Mexiko.

Eines der größten Radioteleskop-Arrays, das Very Large Array, befindet sich in Socorro, New Mexico, USA. Das Array besteht aus 27 Teleskopen von jeweils 25 Meter Durchmesser, die in einer Y-förmigen Konfiguration angeordnet sind.

Ein weiters steht in Indien, etwa 80 km nördlich von Pune im Bundesstaat Maharashtra. Das Giant Metrewave Radio Telescope (GMRT) besteht aus 30 Einzelteleskopen von jeweils 45 Meter Durchmesser, die über eine Entfernung von bis zu 25 km verstreut liegen. Es kann Messungen in sechs verschiedenen Frequenzbändern von 50 MHz bis 1.5 GHz durchführen.

Seit 2006 wird in den Niederlanden ein neuartiges Radioteleskop zur Beobachtung von niederfrequenten Radiowellen im Meterwellenbereich gebaut, das Low Frequency Array LOFAR. Bis 2009 sollen etwa 10000 Antennen in rund 40 Stationen mit einer maximalen Basislinie von 100 km aufgebaut werden. Die erste internationale LOFAR-Station arbeitet seit 2007 neben dem 100 m Teleskop Effelsberg. Weitere Stationen folgen 2008 bei Garching, Potsdam, Tautenburg, in England und in Frankreich. LOFAR ist der Prototyp für ein noch größeres Radioteleskop, das Square Kilometre Array SKA.

Ein wichtiges Projekt zur Erkundung des Universums, welches mit Hilfe der Radioteleskope durchgeführt wird, ist HIPASS. Hierbei wird entfernungssensitiv nach der Signatur des Wasserstoffs als Indikator für Galaxien gesucht. Der Bereich der Südhemisphäre ist bereits abgeschlossen. Die meisten Daten wurden mittels des Parkes-Radioteleskops (Australien) ermittelt.

[Bearbeiten] Mögliche Entwicklungen

Der europäische Raumfahrtkonzern EADS plant die Errichtung eines Radioteleskops auf der Rückseite des Mondes. Aufgrund der dort herrschenden Funkstille kann die Empfindlichkeit für den Empfang von Radiowellen deutlich verbessert werden. Durch das Fehlen einer Atmosphäre tritt keine wellenlängenabhängige Dämpfung auf, so dass ein breiteres Spektrum von Radiowellen beobachtbar ist.

Das Konzept der Zusammenschaltung von mehreren Radioteleskopen zu einem Array mit sehr großer resultierender Detailauflösung bildet die Grundlage für die Idee der Errichtung eines solchen Arrays in einer Umlaufbahn um die Sonne. Dabei kann eine vorteilhafte Positionierung der Einzelteleskope an den Lagrange-Punkten L3, L4 und L5 erfolgen. Die Auflösung eines solchen Arrays würde ausreichen, um Exoplaneten direkt sichtbar zu machen.

[Bearbeiten] Siehe auch / Einzelnachweise

  1. http://www.spektrum.de/artikel/821015
Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com