See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Monte-Carlo-Algorithmus – Wikipedia

Monte-Carlo-Algorithmus

aus Wikipedia, der freien Enzyklopädie

Monte-Carlo-Algorithmen sind randomisierte Algorithmen, die mit einer nach oben beschränkten Wahrscheinlichkeit ein falsches Ergebnis liefern dürfen. Dafür sind sie im Vergleich zu deterministischen Algorithmen häufig effizienter. Ihr Nachteil besteht darin, dass das berechnete Ergebnis falsch sein kann. Durch Wiederholen des Algorithmus mit unabhängigen Zufallsbits kann jedoch die Fehlerwahrscheinlichkeit gesenkt werden (Probability Amplification, weitere Einzelheiten im Artikel Randomisierter Algorithmus). Im Gegensatz zu Monte-Carlo-Algorithmen dürfen Las-Vegas-Algorithmen nur korrekte Lösungen berechnen.

Inhaltsverzeichnis

[Bearbeiten] Ein- und zweiseitiger Fehler

Monte-Carlo-Algorithmen gibt es für Suchprobleme (Probleme, bei denen eine Lösung zu berechnen ist) und Entscheidungsprobleme (Probleme, bei denen eine Ja/Nein-Frage zu beantworten ist). Bei Monte-Carlo-Algorithmen für Entscheidungsprobleme unterscheidet man ein- und zweiseitigen Fehler. Bei zweiseitigem Fehler darf ein Monte-Carlo-Algorithmus sowohl false-positives liefern (also die Ausgabe Ja, obwohl Nein richtig wäre), als auch false negatives (also die Ausgabe Nein, obwohl Ja richtig wäre). Bei einseitigem Fehler ist nur eine der beiden Fehlermöglichkeiten erlaubt; eine häufige Konvention besteht darin, von einseitigem Fehler zu sprechen und damit false negatives zu meinen. Diese Konzepte verdeutlichen wir auch im folgenden Abschnitt, wo Komplexitätsklassen für Probleme mit Monte-Carlo-Algorithmen definiert werden.

[Bearbeiten] Komplexitätsklassen für Entscheidungsprobleme mit randomisierten Algorithmen

  • BPP (bounded error probabilistic polynomial) ist die Menge der Entscheidungsprobleme, für die es einen polynomiell zeitbeschränkten randomisierten Algorithmus mit den folgenden Eigenschaften gibt: Wenn die korrekte Ausgabe Ja (Nein) lautet, beträgt die Wahrscheinlichkeit, dass der Algorithmus Ja (bzw. Nein) ausgibt, mindestens 2/3.
  • RP (random polynomial) ist die Menge der Entscheidungsprobleme, für die es einen polynomiell zeitbeschränkten randomisierten Algorithmus mit den folgenden Eigenschaften gibt: Wenn die korrekte Ausgabe Ja lautet, beträgt die Wahrscheinlichkeit, dass der Algorithmus Ja ausgibt, mindestens 1/2; wenn die korrekte Ausgabe Nein lautet, beträgt die Wahrscheinlichkeit, dass Algorithmus Nein ausgibt, 1.
  • co-RP ist die Menge der Entscheidungsprobleme, für die es einen polynomiell zeitbeschränkten randomisierten Algorithmus mit den folgenden Eigenschaften gibt: Wenn die korrekte Ausgabe Ja lautet, beträgt die Wahrscheinlichkeit, dass der Algorithmus Ja ausgibt, 1; wenn die korrekte Ausgabe Nein lautet, beträgt die Wahrscheinlichkeit, dass Algorithmus Nein ausgibt, mindestens 1/2. Damit enthält co-RP die Komplemente der Probleme in RP.

Die angegebenen Schranken für die Wahrscheinlichkeiten müssen jeweils für alle Eingaben gelten; die Wahrscheinlichkeiten beziehen sich jeweils nur auf die vom Algorithmus verwendeten Zufallsbits (und nicht auf die Eingabe, die Eingabe wird also nicht als zufällig aufgefasst). Mit Hilfe von Probability Amplification kann man zeigen, dass die Konstante 2/3 aus der Definition von BPP durch jede andere Konstante aus dem Intervall (1/2,1) ersetzt werden kann, ohne die Menge BPP zu ändern; ebenso kann in den Definitionen von RP und co-RP die Konstante 1/2 durch jede Konstante aus dem Intervall (0,1) ersetzt werden.

Obwohl BPP und RP Mengen von Problemen sind, werden im allgemeinen Sprachgebrauch häufig Begriffe wie BPP-Algorithmen oder RP-Algorithmen benutzt, um Algorithmen mit den oben definierten Eigenschaften zu bezeichnen.

Zur Verdeutlichung der Definition von RP: Wenn ein RP-Algorithmus die Ausgabe Ja liefert, wissen wir mit Sicherheit, dass die Ausgabe Ja korrekt ist (da die Definition sicherstellt, dass bei korrekter Ausgabe Nein dies auf jeden Fall auch ausgegeben wird). Wenn dagegen ein RP-Algorithmus die Ausgabe Nein liefert, wissen wir nichts über die korrekte Ausgabe (da nach der Definition die Ausgabe Nein möglich ist, wenn Ja oder Nein korrekt wäre).

[Bearbeiten] Beispiele

[Bearbeiten] Miller-Rabin-Primzahltest

Ein Beispiel für einen Monte-Carlo-Algorithmus ist der Miller-Rabin-Test, bei dem probabilistisch bestimmt wird, ob eine natürliche Zahl prim ist oder nicht. Wenn der Miller-Rabin-Test eine Primzahl als Eingabe bekommt, lautet die Ausgabe "Primzahl", wenn er eine zusammengesetzte Zahl als Eingabe bekommt, ist mit hoher Wahrscheinlichkeit das Ergebnis "zusammengesetzte Zahl". Damit zeigt der Miller-Rabin-Test, dass der Primzahltest in co-RP enthalten ist.

[Bearbeiten] Probabilistische Bestimmung der Zahl Pi

Man wählt hierzu zufällige Punkte \left( x, y | x \in \left[ 0..1 \right] \wedge y \in \left[ 0..1 \right]\right) aus und überprüft, ob diese innerhalb des Einheitskreises liegen. Die sich ergebende Wahrscheinlichkeitsverteilung P(Im Kreis) stellt die Fläche eines Viertels des Einheitskreises dar. Pi kann nun mit folgender Formel berechnet werden: \frac{ r^{2} \cdot \pi }{ 4 } = \frac{\text{Treffer im (Einheits)kreis}}{\text{generierte Punkte im Rechteck}} = P \left( \text{Im Kreis} \right)

[Bearbeiten] Numerische Integration

Numerische Integration mit Monte Carlo: Die Stützstellen werden zufällig gleichverteilt auf dem Integrationsintervall gewählt. Neue Stützstellen sind dunkelblau, die alten hellblau eingezeichnet. Der Wert des Integrals nähert sich 3,32 an.
Numerische Integration mit Monte Carlo: Die Stützstellen werden zufällig gleichverteilt auf dem Integrationsintervall gewählt. Neue Stützstellen sind dunkelblau, die alten hellblau eingezeichnet. Der Wert des Integrals nähert sich 3,32 an.

Das obige Beispiel zur Bestimmung von Pi bildet praktisch das Flächenintegral einer Viertelkreisfläche. Entsprechend kann man das Flächenintegral allgemeiner, auch höherdimensionaler Funktionen nach dieser Methode berechnen. Dazu bildet man zufällige Werte der Funktionsargumente und zufällige Werte im Intervall der möglichen Funktionsergebnisse und zählt, wie viele der direkt berechneten Funktionswerte unterhalb der zufällig gewählten Werte liegen. Das Integral ergibt sich dann als Rechteckfläche (aus Argument- und Funktionswertintervall, bzw. (Hyper)Quadervolumen) multipliziert mit diesem Zählverhältnis.

[Bearbeiten] Literatur

R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge University Press, Cambridge 1995, ISBN 0-521-47465-5.


[Bearbeiten] Siehe auch

Monte-Carlo-Simulation, Liste von Algorithmen, Las-Vegas-Algorithmus, Kreiszahl

[Bearbeiten] Weblinks


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -