Sepsis
From Wikipedia, the free encyclopedia
Sepsis Classification and external resources |
|
ICD-10 | A40. - A41.0 |
---|---|
ICD-9 | 995.91 |
DiseasesDB | 11960 |
MeSH | D018805 |
Sepsis is a serious medical condition characterized by a whole-body inflammatory state caused by infection.
Sepsis is broadly defined as the presence of various pus-forming and other pathogenic organisms, or their toxins, in the blood or tissues.[1] While the term sepsis is frequently used to refer to septicemia (blood poisoning), septicemia is but one type of sepsis.[1][2] Bacteremia specifically refers to the presence of bacteria in the bloodstream (viremia and fungemia are analogous terms for viruses and fungi). Bacteremia does not necessarily cause sepsis.
Contents |
[edit] Signs and symptoms
In addition to symptoms related to the provoking infection, sepsis is characterized by evidence of acute inflammation present throughout the entire body, and is therefore frequently associated with fever and elevated white blood cell count (leukocytosis). The modern concept of sepsis is that the host's immune response to the infection causes most of the symptoms of sepsis, resulting in hemodynamic consequences and damage to organs. This host response has been termed systemic inflammatory response syndrome (SIRS) and is characterized by hemodynamic compromise and resultant metabolic derangement.
This immunological response causes widespread activation of acute phase proteins, affecting the complement system and the coagulation pathways, which then cause damage to the vasculature as well as to the organs. Various neuroendocrine counter-regulatory systems are then activated as well, often compounding the problem. Even with immediate and aggressive treatment, this may progress to multiple organ dysfunction syndrome and eventually death.
[edit] Epidemiology
In the United States, sepsis is the leading cause of death in non-coronary ICU patients, and the tenth most common cause of death overall according to data from the Centers for Disease Control and Prevention.[3] Sepsis is common and also more dangerous in elderly, immunocompromised, and critically ill patients. It occurs in 1%-2% of all hospitalizations and accounts for as much as 25% of intensive care unit (ICU) bed utilization. It is a major cause of death in intensive care units worldwide, with mortality rates that range from 20% for sepsis to 40% for severe sepsis to >60% for septic shock.
[edit] Definition of sepsis
Sepsis is considered present if infection is highly suspected or proven and two or more of the following systemic inflammatory response syndrome (SIRS) criteria are met:[4]
- Heart rate > 90 beats per minute (tachycardia)
- Body temperature < 36 °C (96.8 °F) or > 38 °C (100.4 °F) (hypothermia or fever)
- Respiratory rate > 20 breaths per minute or, on blood gas, a PaCO2 less than 32 mm Hg (4.3 kPa) (tachypnea or hypocapnia due to hyperventilation)
- White blood cell count < 4000 cells/mm³ or > 12000 cells/mm³ (< 4 x 109 or > 12 x 109 cells/L), or greater than 10% band forms (immature white blood cells). (leukopenia, leukocytosis, or bandemia)
Fever and leukocytosis are features of the acute phase reaction, while tachycardia is often the initial sign of hemodynamic compromise. Tachypnea may be related to the increased metabolic stress due to infection and inflammation, but may also be an ominous sign of inadequate perfusion resulting in the onset of anaerobic cellular metabolism.
In children, the SIRS criteria are modified in the following fashion:[5]
- Heart rate > 2 standard deviations above normal for age in the absence of stimuli such as pain and drug administration, OR unexplained persistent elevation for greater than 30 minutes to 4 hours. In infants, also includes Heart rate < 10th percentile for age in the absence of vagal stimuli, beta-blockers, or congenital heart disease OR unexplained persistent depression for greater than 30 minutes.
- Body temperature obtained orally, rectally, from Foley catheter probe, or from central venous catheter probe > 38.5°C or < 36°C. Temperature must be abnormal to qualify as SIRS in pediatric patients.
- Respiratory rate > 2 standard deviations above normal for age OR the requirement for mechanical ventilation not related to neuromuscular disease or the administration of anesthesia.
- White blood cell count elevated or depressed for age not related to chemotherapy, or greater than 10% bands + other immature forms.
Note that SIRS criteria are very non-specific,[6] and must be interpreted carefully within the clinical context. These criteria exist primarily for the purpose of more objectively classifying critically-ill patients so that future clinical studies may be more rigorous and more easily reproducible.
Consensus definitions however continue to evolve with the latest expanding the list of signs and symptoms of sepsis to reflect clinical bedside experience.[6]
To qualify as sepsis, there must be an infection suspected or proven (by culture, stain, or polymerase chain reaction(PCR)), or a clinical syndrome pathognomonic for infection. Specific evidence for infection includes WBCs in normally sterile fluid (such as urine or cerebrospinal fluid(CSF), evidence of a perforated viscus (free air on abdominal x-ray or CT scan, signs of acute peritonitis), abnormal chest x-ray (CXR) consistent with pneumonia (with focal opacification), or petechiae, purpura, or purpura fulminans
The more critical subsets of sepsis are severe sepsis (sepsis with acute organ dysfunction) and septic shock (sepsis with refractory arterial hypotension). Alternatively, when two or more of the systemic inflammatory response syndrome criteria are met without evidence of infection, patients may be diagnosed simply with "SIRS." Patients with SIRS and acute organ dysfunction may be termed "severe SIRS."
Patients are defined as having "severe sepsis" if they have sepsis plus signs of systemic hypoperfusion: either end organ dysfunction or a serum lactate greater than 4 mmol/dL. Other signs include oliguria and altered mental status. Patients are defined as having septic shock if they have sepsis plus hypotension after aggressive fluid resuscitation (typically upwards of 6 liters or 40 ml/kg of crystalloid).
Examples of end-organ dysfunction include the following:[7]
- Lungs
- acute lung injury(ALI) (PaO2/FiO2 < 300) or acute respiratory distress syndrome(ARDS) (PaO2/FiO2 < 200)
- Brain
- encephalopathy
- symptoms:
- agitation
- confusion
- coma
- etiologies:
- ischemia
- hemorrhage
- microthrombi
- microabscesses
- multifocal necrotizing leukoencephalopathy
- symptoms:
- encephalopathy
- Liver
- disruption of protein synthetic function: manifests acutely as progressive coagulopathy due to inability to synthesize clotting factors
- disruption of metabolic functions: manifests as cessation of bilirubin metabolism, resulting in elevated unconjugated serum bilirubin levels (indirect bilirubin)
- Kidney
- oliguria and anuria
- electrolyte abnormalities
- volume overload
- Heart
- systolic and diastolic heart failure, likely due to cytokines that depress myocyte function
- cellular damage, manifest as a troponin leak (although not necessarily ischemic in nature)
More specific definitions of end-organ dysfunction exist for SIRS in pediatrics.[5]
- Cardiovascular dysfunction (after fluid resuscitation with at least 40 ml/kg of crystalloid)
- hypotension with blood pressure < 5th percentile for age or systolic blood pressure < 2 standard deviations below normal for age, OR
- vasopressor requirement, OR
- two of the following criteria:
- unexplained metabolic acidosis with base deficit > 5 mEq/L
- lactic acidosis: serum lactate 2 times the upper limit of normal
- oliguria (urine output < 0.5 ml/kg/hr)
- prolonged capillary refill > 5 seconds
- core to peripheral temperature difference > 3°C
- Respiratory dysfunction (in the absence of cyanotic heart disease or known chronic lung disease)
- the ratio of the arterial partial-pressure of oxygen to the fraction of oxygen in the gases inspired (PaO2/FiO2) < 300 (the definition of acute lung injury), OR
- arterial partial-pressure of carbon dioxide (PaCO2) > 65 torr (20 mmHg) over baseline PaCO2 (evidence of hypercapnic respiratory failure), OR
- supplemental oxygen requirement of greater than FiO2 0.5 to maintain oxygen saturation ≥ 92%
- Neurologic dysfunction
- Glasgow Coma Score (GCS) ≤ 11, OR
- altered mental status with drop in GCS of 3 or more points in a patient with developmental delay/mental retardation
- Hematologic dysfunction
- platelet count < 80,000/mm3 or 50% drop from maximum in chronically thrombocytopenic patients, OR
- international normalized ratio (INR) > 2
- Renal dysfunction
- serum creatinine ≥ 2 times the upper limit of normal for age or 2-fold increase in baseline creatinine in patients with chronic kidney disease
- Hepatic dysfunction (only applicable to infants > 1 month)
- total serum bilirubin ≥ 4 mg/dl, OR
- alanine aminotransferase (ALT) ≥ 2 times the upper limit of normal
[edit] Neonatal sepsis
In common clinical usage, sepsis specifically refers to the presence of a serious bacterial infection(SBI) (such as meningitis, pneumonia, pyelonephritis, or gastroenteritis) in the setting of fever. Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable.
It is difficult to clinically exclude sepsis in newborns less than 90 days old who have fever (defined as a temperature > 38° C (100.4° F). Except in the case of obvious acute viral bronchiolitis, the current practice in newborns less than 30 days old is to perform a complete workup including complete blood count with differential, blood culture, urinalysis, urine culture, and cerebrospinal fluid(CSF) studies and CSF culture, admit the newborn to the hospital, and treat empirically for serious bacterial infection for at least 48 hours until cultures are demonstrated to show no growth. Attempts have been made to see if it is possible to risk stratify newborns in order to decide if a newborn can be safely monitored at home without treatment despite having a fever. One such attempt is the Rochester criteria.
A study performed at Strong Memorial Hospital in Rochester, New York, showed that infants ≤ 60 days old meeting the following criteria were at low-risk for having a serious bacterial illness[8]:
- generally well appearing
- previously healthy
- full term (at ≥37 weeks gestation)
- no antibiotics perinatally
- no unexplained hyperbilirubinemia that required treatment
- no antibiotics since discharge
- no hospitalizations
- no chronic illness
- discharged at the same time or before the mother
- no evidence of skin, soft tissue, bone, joint, or ear infection
- WBC count 5,000-15,000/mm3
- absolute band count ≤ 1,500/mm3
- urine WBC count ≤ 10 per high power field (hpf)
- stool WBC count ≤ 5 per high power field (hpf) only in infants with diarrhea
Those meeting these criteria likely do not require a lumbar puncture, and are felt to be safe for discharge home without antibiotic treatment, or with a single dose of intramuscular antibiotics, but will still require close outpatient follow-up.
[edit] Treatment
[edit] Sepsis in Adults and Children
The therapy of sepsis rests on antibiotics, surgical drainage of infected fluid collections, fluid replacement and appropriate support for organ dysfunction. This may include hemodialysis in kidney failure, mechanical ventilation in pulmonary dysfunction, transfusion of blood products, and drug and fluid therapy for circulatory failure. Ensuring adequate nutrition—preferrably by enteral feeding, but if necessary by parenteral nutrition—is important during prolonged illness.
A problem in the adequate management of septic patients has been the delay in administering therapy after sepsis has been recognized. Published studies have demonstrated that for every hour delay in the administration of appropriate antibiotic therapy there is an associated 7% rise in mortality. A large international collaboration was established to educate people about sepsis and to improve patient outcomes with sepsis, entitled the "Surviving Sepsis Campaign." The Campaign has published an evidence-based review of management strategies for severe sepsis,[9] with the aim to publish a complete set of guidelines in subsequent years.
Early Goal Directed Therapy (EGDT), developed at Henry Ford Hospital by E. Rivers, MD, is a systematic approach to resuscitation that has been validated in the treatment of severe sepsis and septic shock. It is meant to be started in the Emergency Department. The theory is that one should use a step-wise approach, having the patient meet physiologic goals, to optimize cardiac preload, afterload, and contractility, thus optimizing oxygen delivery to the tissues.[10]
In EGDT, fluids are administered until the central venous pressure (CVP), as measured by a central venous catheter, reaches 8-12 cm of water (or 10-15 cm of water in mechanically ventilated patients). This may require around 6 liters of isotonic crystalloid solution, rapidly administered. If the mean arterial pressure is less than 65 mmHg or greater than 90 mmHg, vasopressors or vasodilators are given as needed to reach the goal. Once these goals are met, the mixed venous oxygen saturation (SvO2), i.e. the oxygen saturation of venous blood as it returns to the heart as measured at the vena cava, is optimized. If the SvO2 is less than 70%, blood is given to reach a hemoglobin of 10 g/dl and then inotropes are added until the SvO2 is optimized. Elective intubation may be performed to reduce oxygen demand if the SvO2 remains low despite optimization of hemodynamics. Urine output is also monitored, with a minimum goal of 0.5 ml/kg/h. In the original trial, mortality was cut from 46.5% in the control group to 30.5% in the intervention group.[10] The Surviving Sepsis Campaign guidelines recommends EGDT for the initial resuscitation of the septic patient with a level B strength of evidence (single randomized control trial).[9]
Most therapies aimed at the inflammation process itself have failed to improve outcome, however drotrecogin alfa (activated protein C, one of the coagulation factors) has been shown to decrease mortality from about 31% to about 25% in severe sepsis. To qualify for drotrecogin alfa, a patient must have severe sepsis or septic shock with an APACHE II score of 25 or greater and a low risk of bleeding.[11] Low dose hydrocortisone treatment has shown promise for septic shock patients with relative adrenal insufficiency as defined by ACTH stimulation testing.[12]
[edit] Rule Out Sepsis and Suspected Sepsis in Neonates
Note that in neonates, sepsis is difficult to diagnose clinically. They may be relatively asymptomatic until hemodynamic and respiratory collapse is imminent, so if there is even a remote suspicion of sepsis, they are frequently treated with antibiotics empirically until cultures are sufficiently proven to be negative. In addition to fluid resuscitation and supportive care, a common antibiotic regimen in infants with suspected sepsis is a beta-lactam antibiotic (usually ampicillin) in combination with an aminoglycoside (usually gentamicin) or a third-generation cephalosporin (usually cefotaxime—ceftriaxone is generally avoided in neonates due to the theoretical risk of causing biliary stasis.) The organisms which are targeted are species that predominate in the female genitourinary tract and to which neonates are especially vulnerable to, specifically Group B Streptococcus, Escherichia coli, and Listeria monocytogenes (This is the main rationale for using ampicillin versus other beta-lactams.) Of course, neonates are also vulnerable to other common pathogens that can cause meningitis and bacteremia such as Streptococcus pneumoniae and Neisseria meningitidis. Although uncommon, if anaerobic species are suspected (such as in cases where necrotizing enterocolitis or intestinal perforation is a concern, clindamycin is often added.
[edit] Prognosis
Prognosis can be estimated with the MEDS score.[13]
[edit] Related conditions/complications
- Infection is the invasion of normally sterile host tissues by a microbial pathogen.
- Bacteremia is the presence of bacteria in the blood. Bacteremia can occur in sepsis and other serious diseases such as infective endocarditis, bacteremic pyelonephritis or pneumonia and meningitis but it may also be a harmless and transient condition.
- Viremia is the presence of viruses in the blood.
- Fungemia is the presence of fungi in the blood.
- Septic arthritis is an infection of a joint: it may be due to hematogenous spread of infection resulting in bacteremia, or the direct effect of penetrating trauma.
- Disseminated intravascular coagulation (DIC) can be the result of sepsis.
- Acute tubular necrosis (ATN) leading to acute renal failure, can be the result of hypoperfusion of the kidneys in sepsis (i.e. not enough blood gets to the kidney and they stop working properly) and/or direct damage due to the inflammatory agents unleashed by the host's immune response.
- Arrhythmia is an abnormal heart rhythm. In the setting of sepsis, this can arise because of the activation of various neuroendocrine counter-regulatory mechanisms, because of direct effects of cytokines and other inflammatory agents on the myocardium, or because of coronary hypoperfusion due to heart failure related to sepsis.
- Ileus or ischemic colitis can be the result (hypoperfusion) of or cause of sepsis. (Injury to the bowel can result in increased permeability of the bowel wall, allowing pathogens and toxins to freely enter the blood.)
- Multiple organ dysfunction syndrome can be the result of sepsis.
- Meningitis, infection of the tissue that covers the brain and spinal cord, can be a cause of sepsis.
- Osteomyelitis is an infection of the bone; it can be the cause of sepsis.
- Endocarditis, infection of the inner surface of heart which is in contact with blood, can also be a cause of sepsis.
- Pneumonia is an infection of the lungs.
- Pyelonephritis is infection of the kidney.
- Pyaemia — causes abscesses.
[edit] References
- ^ a b Sepsis. eMedicine Online Medical Dictionary. Retrieved on 2008-02-22.
- ^ Septicemia. eMedicine Online Medical Dictionary. Retrieved on 2007-06-30.
- ^ Martin GS, Mannino DM, Eaton S, Moss M (2003-04-17). "The epidemiology of sepsis in the United States from 1979 through 2000". N Engl J Med 348 (16): 1546-54. doi: . PMID 12700374.
- ^ Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (June 1992). "Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine" (PDF). Chest 101 (6): 1644-55. doi: . PMID 1303622.
- ^ a b Goldstein B, Giroir B, Randolph A (2005). "International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics". Pediatr Crit Care Med 6 (1): 2–8. doi: . PMID 15636651.
- ^ a b Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (April 2003). "2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference". Crit Care Med 31 (4): 1250-1256. doi: .
- ^ Abraham E, Singer M (2007). "Mechanisms of sepsis-induced organ dysfunction". Crit. Care Med. 35 (10): 2408–16. PMID 17948334.
- ^ Dagan R, Powell KR, Hall CB, Menegus MA (December 1985). "Identification of infants unlikely to have serious bacterial infection although hospitalized for suspected sepsis". J. Pediatr. 107 (6): 855–60. PMID 4067741.
- ^ a b Dellinger RP, Levy MM, Carlet JM, et.al, for the International Surviving Sepsis Campaign Guidelines Committee. (2008). "Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008". Crit Care Med 36 (1): 296-327. PMID 18158437.
- ^ a b Rivers E, Nguyen B, Havstad S, et al (2001). "Early goal-directed therapy in the treatment of severe sepsis and septic shock". N. Engl. J. Med. 345 (19): 1368-77. doi: . PMID 11794169.
- ^ Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr (2001-03-08). "Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis". N Engl J Med 344 (10): 699-709. PMID 11236773.
- ^ Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaut P, Bellissant E (2002-08-21). "Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock". JAMA 288 (7): 862-71. doi: . PMID 12186604.
- ^ Shapiro NI, Wolfe RE, Moore RB, Smith E, Burdick E, Bates DW (2003). "Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule". Crit. Care Med. 31 (3): 670-5. doi: . PMID 12626967.
[edit] See also
[edit] External links
- Septicemia in the Medical Encyclopedia, Medline Plus ("A service of the United States National Library of Medicine [NLM] and the National Institutes of Health [NIH]"). Updated October 27, 2005. Accessed August 31, 2007.
- Surviving Sepsis Campaign
- International Sepsis Forum
- Advances in Sepsis journal
- Sepsis.com
- Medscape Sepsis Resource Center
- AboutSepsis.com
|
|