See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
เส้นเวลาของคณิตศาสตร์ - วิกิพีเดีย

เส้นเวลาของคณิตศาสตร์

จากวิกิพีเดีย สารานุกรมเสรี

ลิงก์ข้ามภาษาที่แทรกในบทความนี้ ผู้เขียนอาจใส่ไว้เพื่อความสะดวกสำหรับผู้อ่านและผู้ร่วมปรับปรุงแก้ไขบทความ ให้โยงไปถึงบทความที่เกี่ยวข้องในภาษาอื่นเพื่อการตรวจสอบหรืออ่านเพิ่มเติม เนื่องจากคำ หรือวลีนั้นๆ ยังไม่มีคำแปลหรือคำอธิบายที่เหมาะสมในภาษาไทย เมื่อหมดความจำเป็นแล้ว ลิงก์ข้ามภาษาจะถูกตัดออกหรือเปลี่ยนเป็นข้อความที่ไม่มีลิงก์แทน ทั้งนี้ เพื่อให้เป็นไปตามมาตรฐานวิกิพีเดียไทย
บทความนี้หรือส่วนนี้ ได้รับแจ้งว่าควรมีการปรับปรุงในเรื่องการใช้ภาษา
รวมถึงการเรียบเรียงประโยค การแปลภาษา การทับศัพท์ การเขียนสะกดคำ ตลอดจนรูปแบบการเขียนอื่นที่ไม่เป็นสารานุกรม
คุณสามารถช่วยปรับปรุงแก้ไข โดยการปรับปรุงไวยากรณ์ให้เหมาะสม และแก้ไขคำศัพท์ให้ถูกต้อง ดูเพิ่มที่ คู่มือ และ นโยบายวิกิพีเดีย

เส้นเวลาของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ (timeline of mathematics)

เนื้อหา

[แก้] สมัยกรีก อียิปต์และก่อนหน้า

  • 530 ก่อน ค.ศ. - พีทาโกรัส ศึกษาและคิดค้นเรขาคณิต รวมทั้งนำคณิตศาสตร์มาใช้อธิบายการสั่นของเส้นเชือก นอกจากนี้ลูกศิษย์ของเขายังได้ค้นพบจำนวนอตรรกยะจากรากที่สองของ 2 (มีเรื่องเล่ากันว่าพีทาโกรัสผู้ซึ่งบูชาตัวเลขดั่งพระเจ้า ตกใจมากกับการค้นพบตัวเลขซึ่งไม่สามารถแทนได้ด้วยเศษส่วนนี้ จึงสั่งให้ลูกศิษย์เซ่นไหว้วัว 100 ตัวในการขอขมาที่ไปพบกับความลับของพระเจ้า),
  • 370 ก่อน ค.ศ. - ยุโดซุสแห่งไซน์ดุส คิดค้น method of exhaustion ซึ่งเป็นวิธีที่ทรงพลังในการหาพื้นที่ของรูปเรขาคณิต ซึ่งเป็นเทคนิคที่อาร์คิมิดีสเชี่ยวชาญมากในเวลาต่อมา และเป็นหนึ่งในรากฐานสำคัญของแคลคูลัส,
  • 350 ก่อน ค.ศ. - อริสโตเติล คิดค้นตรรกศาสตร์หรือศาสตร์แห่งการให้เหตุผลในตำรา Organon,
  • 300 ก่อน ค.ศ. - ยุคลิด เขียนตำราเรขาคณิตชื่อ อีลีเมนท์สThe Elememts ซึ่งเป็นตำราที่นักคณิตศาสตร์ทั้งในอดีตและปัจจุบันยกย่องว่า สมบูรณ์ใกล้เคียงกับคณิตศาสตร์สมัยใหม่มาก โดยใช้วิธีการทางสัจพจน์เป็นฐานของทฤษฎีบททั้งหมด ภายในนั้นมีบทพิสูจน์ว่าจำนวนเฉพาะมีไม่จำกัด (เป็นจำนวนอนันต์) รวมทั้งขั้นตอนวิธีแบบยุคลิด และการพิสูจน์ทฤษฎีบทมูลฐานของเลขคณิต นักประวัติศาสตร์ชาวยุโรปบางท่านกล่าวว่าตำราเล่มนี้เป็นหนังสือที่มีผู้อ่านมากที่สุดในประวัติศาสตร์ของมนุษยชาติรองมาจากคัมภีร์ไบเบิล,
  • 260 ก่อน ค.ศ. - อาร์คิมิดีส คำนวณค่า π ได้ถูกต้องถึงทศนิยมตำแหน่งที่สอง โดยใช้ method of exhaustion ของยุโดซุส จากการประมาณรูปวงกลมด้วยรูปหลายเหลี่ยมทั้งภายนอกและภายในวงกลมนั้น แล้วใช้ทฤษฎีบทพีทาโกรัสในการประมาณความยาวของเส้นรอบวง โดยอาร์คิมิดีสสามารถคำนวณความยาวรอบรูปของรูป 96 เหลี่ยม (เพื่อใช้ประมาณแทนรูปวงกลม) ได้ทั้งๆ ที่ยังไม่มีระบบตัวเลขฮินดู-อารบิกและพีชคณิต นอกจากนี้อาร์คิมิดีสยังได้แสดงการคำนวณพื้นที่ใต้รูปพาราโบลาโดยใช้ method of exhaustion อีกเช่นกัน,
  • 240 ก่อน ค.ศ. - เอราทอสเทนีส คิดค้นตะแกรงของเอราทอสเทนีส ซึ่งเป็นอัลกอริทึมที่ใช้หาจำนวนเฉพาะได้อย่างรวดเร็ว (ในสมัยนั้น),
  • 225 ก่อนค.ศ. - อพอลโลนิอุสแห่งเปอร์จา เขียนตำรา On Conic Sections ซึ่งศึกษาเกี่ยวกับภาคตัดกรวยในรูปแบบต่างๆ ไม่ว่าจะเป็น วงรี พาราโบลา หรือ ไฮเพอร์โบลา,
  • 140 ก่อนค.ศ. - ฮิบปาชุส วางรากฐานของตรีโกณมิติ,
  • ประมาณ ค.ศ. 200 - ทอเลมีแห่งอเล็กซานเดรีย เขียนตำรา อัลมาเกส (ภาษาละติน: Almagest แปลว่า หนังสือที่ยิ่งใหญ่) ซึ่งเป็นตำราดาราศาสตร์ที่สำคัญที่สุดในยุคนั้น และได้รับการยกย่องมากในยุคกลางโดยนักคณิตศาสตร์มุสลิม,
  • ค.ศ. 250 - ไดโอฟานตุส เขียนหนังสือ Arithmetica ซึ่งเป็นตำราฉบับแรกที่พูดถึงระบบพีชคณิต,

[แก้] สมัยอาหรับ (ยุคกลาง)

[แก้] ยุคฟื้นฟูศิลปะวิทยาการ (เรอเนซองต์)

  • ค.ศ. 1520 - สคิปิโอเน เดล เฟอโร คิดค้นคำตอบในรูปแบบราก ของสมการกำลังสาม แบบลดรูป (คือสมการกำลังสาม ที่สัมประสิทธิ์ของเทอม x2 เท่ากับ 0) ได้สำเร็จ แต่ว่าไม่ได้ตีพิมพ์ผลงานนี้ และได้ถ่ายทอดให้กับลูกศิษย์คนสนิทชื่อ "อันโตนิโอ ฟิออ" คนเดียวเท่านั้น
  • ค.ศ. 1535 - อันโตนิโอ ฟิออ ซึ่งได้รับถ่ายทอดเทคนิคจาก เดล เฟอโร ได้ท้า นิคโคโล ฟอนตาน่า หรือ ทาร์ทากลียา แข่งทำโจทย์คณิตศาสตร์ โดยต่างคนต่างให้โจทย์อีกฝ่ายคนละ 30 ข้อ โดยฟิออได้ให้ทาร์ทากลียาทำโจทย์สมการกำลังสาม ลดรูปทั้งหมด 30 ข้อ และในที่สุด ทาร์ทากลียาก็คิดค้นคำตอบในรูปแบบรากได้เช่นเดียวกันกับ เดล เฟอโร และชนะการแข่งขันครั้งนั้น อย่างไรก็ตาม ทาร์ทากลียาก็ไม่ได้ตีพิมพ์ผลงานชิ้นนี้เช่นกัน,
  • ค.ศ. 1539 - จีโรลาโม คาร์ดาโน เรียนรู้วิธีในการหาคำตอบสมการกำลังสามลดรูปจากทาร์ทากลียา และในเวลาต่อมา คาร์ดาโนก็สามารถคิดค้นวิธีหาคำตอบในรูปแบบรากของสมการกำลังสามแบบสมบูรณ์ได้,
  • ค.ศ. 1540 - โลโดวิโค เฟอรารีซึ่งเป็นลูกศิษย์ของคาร์ดาโน คิดค้นวิธีหาคำตอบในรูปแบบรากของสมการกำลังสี่ ได้สำเร็จ,
  • ค.ศ. 1614 - จอห์น นาเปียร์ คิดค้นลอการิทึมได้สำเร็จหลังจากทุ่มเทมานับสิบปี และตีพิมพ์ผลงานนี้ใน Mirifici Logarithmorum Canonis Descriptio,
  • ค.ศ. 1619 - เรอเน เดส์การตส์ และ ปิแยร์ เดอ แฟร์มาต์ คิดค้นเรขาคณิตวิเคราะห์ได้ ในเวลาใกล้เคียงกัน,
  • ค.ศ. 1629 - ปิแยร์ เดอ แฟร์มาต์ ได้คิดค้นรากฐานบางส่วนของแคลคูลัสอนุพันธ์,
  • ค.ศ. 1637 - ปิแยร์ เดอ แฟร์มาต์ ได้จดบันทึกเล็กๆ ในหนังสือ Arithmetica ของไดโอแฟนตุสว่า ผมสามารถพิสูจน์ทฤษฎีบทนี้ได้ แต่ว่าที่ว่างตรงนี้มันน้อยเกินไปที่จะเขียนบทพิสูจน์ ทฤษฎีบทที่ว่านี้ก็คือ ทฤษฎีบทสุดท้ายของแฟร์มาต์ซึ่งไม่มีใครพิสูจน์ได้เลยเป็นเวลานานเกือบ 400 ปี จนกระทั่งแอนดรูว์ ไวล์ได้ให้บทพิสูจน์ในปี ค.ศ. 1995,
  • ค.ศ. 1654 - แบลส์ ปาสกาล และ ปิแยร์ เดอ แฟร์มาต์ ได้ร่วมมือกันคิดค้นรากฐานของทฤษฎีความน่าจะเป็น,จากสามเหลี่ยมปาสกาลซึ่งเป็นผลงานทางคณิตศาสตร์ของชาวจีน

[แก้] คริสต์ศตวรรษที่ 17 และ 18 (ยุคคลาสสิก)

  • ค.ศ. 1665 - ไอแซก นิวตัน พิสูจน์ทฤษฎีบทมูลฐานของแคลคูลัส และสร้างแคลคูลัสขึ้นมาเพื่อแก้ปัญหาทางกลศาสตร์ในฟิสิกส์ โดยนิวตันเรียกแคลคูลัสว่า วิธีแห่งการเปลี่ยนแปลง ,
  • ค.ศ. 1671 - เจมส์ เกรกอรี คิดค้นอนุกรมอนันต์ในการแทนฟังก์ชันผกผันของแทนเจนต์ซึ่งเป็นอนุกรมอนันต์ที่มีการนำไปประยุกต์ใช้อย่างแพร่หลาย เช่น นำไปใช้คำนวณค่า π,
  • ค.ศ. 1673 - กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ ประดิษฐ์แคลคูลัสของเขาเองโดยไม่ขึ้นกับของนิวตัน แคลคูลัสของไลบ์นิซนั้นมีรากฐานมาจากคณิตศาสตร์บริสุทธิ์โดยตรงซึ่งต่างจากนิวตันที่มีรากฐานมาจากการประยุกต์ใช้ในโลกแห่งความเป็นจริง โดยประเด็นที่ว่าใครเป็นผู้คิดค้นแคลคูลัสเป็นคนแรกนั้นถูกถกเถียงกันมานานนับศตวรรษ ชื่อ แคลคูลัส มาจากฝั่งของไลบ์นิซ นอกจากนั้นสัญลักษณ์ทางแคลคูลัสในคณิตศาสตร์ปัจจุบันเราก็ใช้ของไลบ์นิซ เนื่องจากเป็นสัญลักษณ์ที่ช่วยให้จดจำกฎต่างๆ ของแคลคูลัสได้ง่ายกว่าในที่สุดจึงได้รับเป็นบิดาแห่งวิชาแคลคูลัส (ในทำนองเดียวกันกับ สัญลักษณ์ของดิแรกในกลศาสตร์ควอนตัม)
  • ค.ศ. 1675 - ไอแซก นิวตัน คิดค้นการวิเคราะห์เชิงตัวเลขเพื่อหาคำตอบของสมการไม่เชิงเส้น เรียกว่าวิธีของนิวตัน หรือ วิธีของนิวตันและราฟสัน เนื่องจากเวลาต่อมานักคณิตศาสตร์ชื่อราฟสันก็คิดค้นวิธีเดียวกันนี้ได้โดยไม่ขึ้นกับนิวตัน,
  • ค.ศ. 1691 - กอทท์ฟรีด ไลบ์นิซ คิดค้นเทคนิคในการแยกตัวแปรของสมการเชิงอนุพันธ์สามัญ,
  • ค.ศ. 1696 - กุยลอมเมอ เดอ โลปิตาล (ซึ่งเป็นลูกศิษย์ของโยฮัน เบอร์นูลลี ซึ่งเป็นลูกศิษย์ของไลบ์นิซอีกที) ได้คิดค้นกฎของโลปีตาล ในการคำนวณหาค่าลิมิตของฟังก์ชันที่อยู่ในรูป 0/0,
  • ค.ศ. 1696 - โยฮัน เบอร์นูลลี หาคำตอบในปัญหา brachistochrone problem ได้สำเร็จและเป็นจุดเริ่มต้นของแคลคูลัสของการแปรผัน,
  • ค.ศ. 1712 - บรู๊ค เทย์เลอร์ พัฒนาอนุกรมเทย์เลอร์ได้สำเร็จ,
  • ค.ศ. 1722 - อับราฮัม เดอ มอยเร ได้แสดง De Moivre's theorem ซึ่งทำให้เห็นความสัมพันธ์ระหว่างฟังก์ชันของตรีโกณมิติและจำนวนเชิงซ้อน,
  • ค.ศ. 1730 - เจมส์ สเติรริง ตีพิมพ์ The Differential Method,
  • ค.ศ. 1733 - อับราฮัม เดอ มอยเร นำ การกระจายตัวแบบปกติในการประมาณค่าของการกระจายตัวแบบทวินามของนิวตัน(โดยคันพบจากสามเหลี่ยมปาสคาล)ในทฤษฎีความน่าจะเป็น,
  • ค.ศ. 1734 - เลออนฮาร์ด ออยเลอร์ คิดค้น integrating factor technique ในการแก้ปัญหาสมการเชิงอนุพันธ์สามัญอันดับหนึ่ง,
  • ค.ศ. 1736 - เลออนฮาร์ด ออยเลอร์ แก้ปัญหาสะพานทั้งเจ็ดแห่งเมืองโคนิกส์เบิร์ก ได้สำเร็จและส่งผลให้ทฤษฎีกราฟกำเนิดขึ้นมาเป็นสาขาใหม่ของคณิตศาสตร์,
  • ค.ศ. 1739 - เลออนฮาร์ด ออยเลอร์ คิดวิธีมาตรฐานในการแก้สมการเชิงอนุพันธ์สามัญเชิงเส้นแบบเอกพันธ์ที่มีสัมประสิทธิ์เป็นค่าคงที่ได้สำเร็จ,
  • ค.ศ. 1761 - โทมัส เบย์ ได้สร้างทฤษฎีบทของเบย์ขึ้นมาในทฤษฎีความน่าจะเป็น,
  • ค.ศ. 1762 - โจเซพ หลุยส์ ลากรองช์ คิดค้น divergence theorem,
  • ค.ศ. 1796 - คาร์ล ฟรีดริช เกาส์ พิสูจน์ว่า รูป 17 เหลี่ยมด้านเท่า สามารถสร้างได้ด้วยไม้บรรทัดและวงเวียนเท่านั้น ซึ่งนับเป็นการต่อยอดความรู้กรีกที่นิ่งมาราว 2000 ปีได้สำเร็จ,
  • ค.ศ. 1796 - เอเดรียน-แมรี เลอจองด์ ให้ข้อสันนิษฐานเกี่ยวกับทฤษฎีบทจำนวนเฉพาะ,
  • ค.ศ. 1799 - คาร์ล ฟรีดริช เกาส์ ให้บทพิสูจน์ของทฤษฎีบทมูลฐานของพีชคณิต ที่บอกว่า ทุกๆ สมการพหุนามจะมีคำตอบในรูปจำนวนเชิงซ้อนเสมอ ซึ่งแสดงให้เห็นถึงบทบาทที่สำคัญที่สุดของจำนวนเชิงซ้อนในพีชคณิต,

[แก้] คริสต์ศตวรรษที่ 19

[แก้] คริสต์ศตวรรษที่ 20

  • ค.ศ. 1900 - ดาฟิด ฮิลแบร์ท เสนอปัญหา 23 ข้อของฮิลแบร์ทที่กรุงปารีส โดยฮิลแบร์ทตั้งใจให้เป็นปัญหาแห่งศตวรรษใหม่ กลุ่มปัญหาที่ลึกซึ้งเหล่านี้ช่วยกระตุ้นวงการคณิตศาสตร์ในขณะนั้นให้พัฒนาขึ้นเป็นอย่างมาก,
  • ค.ศ. 1903 - เอ็ดมันด์ ลันเดาได้ให้บทพิสูจน์ที่ค่อนข้างง่ายของทฤษฎีบทจำนวนเฉพาะ,
  • ค.ศ. 1908 - เอิร์นส เซอเมโลได้นิยามกลุ่มสัจพจน์ของทฤษฎีเซตขึ้น เพื่อที่จะหลีกเลี่ยงข้อขัดแย้งที่คันทอร์และรัสเซลล์พบ,
  • ค.ศ. 1913 - ศรีนิวาส รามานุชัน ส่งทฤษฎีบทจำนวนมากชุดหนึ่ง (แต่ไม่ได้ให้บทพิสูจน์) ไปยังก็อดเฟรย์ ฮาร์ดีแห่งมหาวิทยาลัยเคมบริดจ์.
  • ค.ศ. 1914 - Srinivasa Aaiyangar Ramanujan publishes Modular Equations and Approximations to π,
  • ค.ศ. 1928 - John von Neumann begins devising the principles of game theory and proves the minimax theorem,
  • ค.ศ. 1931 - เคิร์ท เกอเดล พิสูจน์ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ที่บอกว่าระบบรูปนัย ถ้ามีประสิทธิภาพเพียงพอแล้ว จำเป็นที่จะต้องไม่สมบูรณ์ หรือไม่เช่นนั้นก็จะไม่มีความต้องกัน,
  • ค.ศ. 1933 - Andrey Nikolaevich Kolmogorov publishes his book Basic notions of the calculus of probability (Grundbegriffe der Wahrscheinlichkeitsrechnung) which contains an axiomatization of probability based on measure theory,
  • ค.ศ. 1940 - Kurt Gödel shows that neither the continuum hypothesis nor the axiom of choice can be disproven from the standard axioms of set theory,
  • ค.ศ. 1943 - Kenneth Levenberg proposes a method for nonlinear least squares fitting,
  • ค.ศ. 1948 - John von Neumann mathematically studies self-reproducing machines,
  • ค.ศ. 1949 - John von Neumann computes π to 2,037 decimal places using ENIAC,
  • ค.ศ. 1960 - C. A. R. Hoare invents the quicksort algorithm,
  • ค.ศ. 1963 - Paul Cohen uses his technique of forcing to show that neither the continuum hypothesis nor the axiom of choice can be proven from the standard axioms of set theory,
  • ค.ศ. 1994 - Andrew Wiles proves part of the Taniyama-Shimura conjecture and thereby proves Fermat's last theorem,
  • ค.ศ. 1999 - the full Taniyama-Shimura conjecture is proved.

[แก้] คริสต์ศตวรรษที่ 21 (ปัจจุบัน)

  • ค.ศ. 2000 - สถาบันคณิตศาสตร์เคลย์ (Clay Mathematics Institute) ได้ประกาศให้เงินรางวัลหนึ่งล้านเหรียญสหรัฐฯ แก่ผู้ที่สามารถหาคำตอบปัญหาข้อใดข้อหนึ่งในปัญหา 7 ข้อของเคลย์ได้,


[แก้] ดูเพิ่ม


เส้นเวลาของคณิตศาสตร์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ เส้นเวลาของคณิตศาสตร์ ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ หรือ ดูเพิ่มที่ สถานีย่อย:คณิตศาสตร์


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -