See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
ทฤษฎีกราฟ - วิกิพีเดีย

ทฤษฎีกราฟ

จากวิกิพีเดีย สารานุกรมเสรี

กราฟที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น
กราฟที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น

ทฤษฎีกราฟ (graph theory) เป็นหนึ่งในสาขาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ที่ศึกษาถึงคุณสมบัติต่างๆ ของสิ่งที่เรียกว่า กราฟ (graph)

เนื้อหา

[แก้] ประวัติ

ทฤษฎีกราฟนั้น มีจุดเริ่มจากผลงานตีพิมพ์ของ เลออนฮาร์ด ออยเลอร์ ภายใต้ชื่อ Solutio problematis ad geometriam situs pertinentis ในปี ค.ศ. 1736 (พ.ศ. 2279) หรือที่รู้จักกันในนาม ปัญหาสะพานทั้งเจ็ดแห่งเมืองโคนิกส์เบิร์ก (Seven Bridges of Königsberg) เขาสนใจวิธีที่จะข้ามสะพานทั้ง 7 แห่งนี้ โดยข้ามแต่ละสะพานเพียงครั้งเดียวเท่านั้น ผลงานนี้ยังถือว่าเป็นงานแนวทอพอโลยีชิ้นแรกในเรขาคณิต กล่าวคือเป็นงานที่สนใจเฉพาะโครงสร้างของรูปเรขาคณิตที่ไม่ขึ้นกับขนาด ระยะ หรือการวัดใดๆ งานชิ้นสำคัญนี้ยังได้แสดงความเกี่ยวข้องอย่างลึกซึ้งระหว่างทฤษฎีกราฟและทอพอโลยี

ในปี ค.ศ. 1845 (พ.ศ. 2388) กุสตาฟ เคอร์ชอฟฟ์ ได้เผยแพร่ผลงานที่รู้จักกันภายใต้ชื่อกฎวงจรไฟฟ้าของเคอร์ชอฟฟ์ ที่แสดงความสัมพันธ์ของกระแสและความต่างศักย์ บนกราฟที่แทนวงจรไฟฟ้า

ต่อมาในปี ค.ศ. 1852 (พ.ศ. 2395) ฟรานซิส กัทธรี ได้ตั้งปัญหาสี่สี (Four color problem) เพื่อศึกษาถึงความเป็นไปได้ที่จะใช้สีเพียง 4 สี เพื่อระบายให้กับประเทศต่าง ๆ บนแผนที่ใด ๆ โดยที่ประเทศเพื่อนบ้านจะไม่มีสีเดียวกัน. ปัญหานี้ได้ถูกแก้ในอีกมากกว่า 100 ปีถัดมา ในปี ค.ศ. 1976 (พ.ศ. 2519) โดย เคนเนธ แอปเพล และวูล์ฟกัง ฮาเคน ซึ่งใช้คอมพิวเตอร์เข้าช่วยในการพิสูจน์ ซึ่งทำให้ได้รับการวิพากษ์วิจารณ์อย่างกว้างขวาง. อย่างไรก็ตามจากความพยายามในการแก้ปัญหา 4 สีนี้ ทำให้มีการสร้างแนวคิดและนิยามพื้นฐานในทฤษฎีกราฟขึ้นอย่างมากมาย จนอาจจะกล่าวได้ว่าจุดเริ่มต้นของทฤษฎีกราฟเกิดจากปัญหาสี่สีนี้เอง

กราฟมักถูกนำเสนอในลักษณะของรูปภาพ โดยใช้จุดแทนจุดยอดแต่ละจุด และลากเส้นระหว่างจุดยอดถ้าจุดยอดทั้งสองนั้นมีเส้นเชื่อมถึงกัน ถ้ากราฟมีทิศทาง ทิศทางของเส้นเชื่อมจะถูกระบุโดยใช้ลูกศร

เราไม่ควรจะสับสนระหว่างกราฟที่วาดออกมากับกราฟ (ที่เป็นโครงสร้างนามธรรม) เนื่องจากกราฟหนึ่ง ๆ สามารถเขียนออกมาได้หลายแบบ และสาระหลักของกราฟนั้นมีแค่ว่าจุดยอดใด เชื่อมต่อกับจุดยอดใด ด้วยเส้นเชื่อมกี่เส้น ไม่ใช่วิธีการที่วาดมันออกมา ในทางปฏิบัติแล้ว การจะตัดสินว่ากราฟที่วาดออกมาสองกราฟนั้น มาจากกราฟเดียวกัน ในบางกรณี การวาดกราฟบางแบบอาจมีความเหมาะสมและทำให้เข้าใจได้ง่ายกว่าแบบอื่น

[แก้] โครงสร้างข้อมูลกราฟ

ดูบทความหลักที่ กราฟ (โครงสร้างข้อมูล)

มีหลายวิธีในการจัดเก็บกราฟในระบบคอมพิวเตอร์ โดยโครงสร้างข้อมูลที่ใช้ขึ้นอยู่กับโครงสร้างของกราฟ และอัลกอริทึมสำหรับประมวลผลกราฟนั้น ในทางทฤษฎีเราอาจแยกแยะโครงสร้างที่เป็นแบบรายการกับที่เป็นเมทริกซ์ได้ แต่ในทางปฏิบัติมักพบว่าโครงสร้างที่ดีมักเป็นลูกผสมของโครงสร้างทั้งสองแบบ โครงสร้างแบบรายการนั้นมักใช้ในกรณีของกราฟเบาบาง (sparse graph) เนื่องจากมีการใช้หน่วยความจำที่น้อยกว่า ในทางกลับกันโครงสร้างแบบเมทริกซ์นั้น มีการเข้าถึงที่รวดเร็วกว่า แต่ก็ใช้หน่วยความจำขนาดใหญ่ถ้าจำนวนจุดยอดของกราฟมีมาก

[แก้] โครงสร้างแบบรายการ

  • รายการตกกระทบ (incidence list)
  • รายการประชิด (adjacency list)

[แก้] โครงสร้างแบบเมทริกซ์

  • เมทริกซ์ตกกระทบ (incidence matrix) - เป็นการจัดเก็บกราฟในเมทริกซ์ขนาด E (จำนวนเส้นเชื่อม) คูณ V (จำนวนจุดยอด) ซึ่ง [เส้นเชื่อม, จุดยอด] จะบรรจุข้อมูลของเส้นเชื่อมนั้น (เช่น 1 คือ เชื่อมต่อกัน, 0 คือ ไม่เชื่อมต่อกัน)
  • เมตริกซ์ประชิด (adjacency matrix) - เป็นการจัดเก็บกราฟในเมทริกซ์ขนาด N คูณ N เมื่อ N คือจำนวนของจุดยอดในกราฟ ถ้ามีเส้นเชื่อมจากจุดยอด x ไปจุดยอด y แล้ว สมาชิก Mx,y จะเป็น 1 ไม่เช่นนั้น จะเป็น 0 ซึ่งทำให้ง่ายต่อการหากราฟย่อย และกราฟย้อนกลับ
  • เมตริกซ์แบบลาปลาส (Laplacian matrix หรือ admittance matrix)

[แก้] ทฤษฎีบทและปัญหาบนกราฟ

[แก้] การค้นหากราฟย่อย

[แก้] การระบายสีกราฟ

[แก้] ปัญหาเส้นทาง

[แก้] การไหลในเครือข่าย

[แก้] ปัญหากราฟการมองเห็น

  • ปัญหายามเฝ้าพิพิธภัณฑ์

[แก้] ดูเพิ่ม

[แก้] ดูเพิ่ม

  • J.A. Bondy and U.S.R. Murty, Graph Theory with Applications [1]
  • Reinhard Diestel, Graph Theory Third Edition [2]
  • Lawler E.L., Combinatorial optimization.. networks and matroids [3]
  • Einführung in Graphen und Algorithmen [4]


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -