See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Двоичная система счисления — Википедия

Двоичная система счисления

Материал из Википедии — свободной энциклопедии

Двоичная система счисления — позиционная целочисленная система счисления с основанием 2. Используются цифры 0 и 1.

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать.
  • Простота создания таблиц сложения и умножения — основных действий над числами

Для представления двоичных отрицательных чисел в компьютерах часто используется дополнительный код.

Содержание

[править] Таблица сложения двоичных чисел

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10  перенос 1 (англ. carry или carry bit)

Если 1 + 1 = 1, то это - не сложение двоичных чисел, а сложение логических выражений, где, скажем, за 0 обозначена "ложь", а за 1 - "истина" (или наоборот).(так же смотрите-двоичная арифметика http://it.kgsu.ru/Assembler/asm0002.html)

[править] Таблица разности двоичных чисел

0 - 0 = 0
0 - 1 = 1
1 - 0 = 1
1 - 1 = 0

[править] Таблица умножения двоичных чисел

0 • 0 = 0
0 • 1 = 0
1 • 0 = 0
1 • 1 = 1


Также есть специфическая возможность — применение алгебры логики для выполнения логических преобразований информации.

[править] Использование двоичной системы при измерении дюймами

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.

[править] Преобразование чисел

Для преобразования из двоичной системы в десятичную и обратно используют следующую таблицу

512 256 128 64 32 16 8 4 2 1.

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1 называется двоичной точкой.

[править] Преобразование двоичных чисел в десятичные

Допустим, вам дано двоичное число 110011. Какому числу оно эквивалентно? Чтобы ответить на этот вопрос, прежде всего запишите данное число следующим образом:

512 256 128 64 32 16 8 4 2 1.
1 1 0 0 1 1
32 +16 +2 +1

Затем, начиная с двоичной точки, двигайтесь влево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110011 равнозначно 51.
Либо 1\times 2^0+1\times 2^1+0\times 2^2+0\times 2^3+1\times 2^4+1\times 2^5=51.

[править] Преобразование методом Горнера

Для того, что бы преобразовывать числа с двоичной в десятичную систему данным методом, надо суммировать цифры слева-направо умножая ранее полученный результат на основу системы (в данном случае 2). Например двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91.

[править] Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9  с остатком 1
9  /2 = 4  c остатком 1
4  /2 = 2  с остатком 0
2  /2 = 1  с остатком 0
1  /2 = 0  с остатком 1

Ставим числа из остатка друг за другом, начиная с конца. В результате получаем число 19 в двоичной записи (начиная с конца): 10011.

[править] Ссылки


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -