See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Вещественное число — Википедия

Вещественное число

Материал из Википедии — свободной энциклопедии

Веще́ственные или действи́тельные[1] числаматематическая абстракция, служащая, в частности, для представления физических величин. Такое число может быть интуитивно представлено как отношение двух величин одной размерности, или описывающие положение точек на прямой. В отличие от большинства понятий математики, вещественные числа знакомы широкому кругу образованных людей ввиду своих разнообразных приложений.

Множество вещественных чисел обозначается \R (Unicode: ℝ) и часто называется вещественной прямой. Относительно операций сложения и умножения вещественные числа образуют поле. Поле вещественных чисел является важнейшим объектом математического анализа.

Содержание

[править] Примеры чисел

вот пара примеров чисел, которые относятся к множеству вещественных чисел \mathbb{R}

[править] Определения

Существует несколько стандартых путей определения вещественных чисел:

[править] Аксиоматическое определение

См. основную статью Аксиоматика вещественных чисел.

Множество вещественных чисел \mathbb{R} можно определить как топологически полное, упорядоченное поле, то есть поле с отношением \leqslant, которое удовлетворяет следующим аксиомам:

  1. Отношение \leqslant является отношением линейного порядка:
    • Для любых a,\;b\in\mathbb{R} a\leqslant b или b\leqslant a;
    • Если a\leqslant b и b\leqslant a, то a = b для любых a,\;b\in\mathbb{R};
    • Если a\leqslant b и b\leqslant c, то a\leqslant c для любых a,\;b,\;c\in\mathbb{R};
  2. Порядок согласован со структурой поля:
    • Если a\leqslant b, то a+c\leqslant b+c для любых a,\; b,\;c\in\mathbb{R};
    • Если 0\leqslant a и 0\leqslant b, то 0\leqslant ab.
  3. Порядок на \mathbb{R} удовлетворяет условию полноты:
    • Пусть A,\;B\subset\mathbb{R} - непустые подмножества, такие что a\leqslant b для любых a\in A и b\in B, тогда существует c\in\mathbb{R} такое, что a\leqslant c\leqslant b для любых a\in A и b\in B.

[править] Примечания

Из свойства 3 следует, что у любого непустого ограниченного сверху множества A\subset \Bbb{R} (т.е. такого, что для всех x из A все x\leqslant a для некоторого a\in\mathbb{R}) существует точная верхняя грань (минимальная из всех), то есть число c\in\mathbb{R} такое, что

  1. Для всех x из A все x\leqslant c
  2. Если свойству (1) удовлетворяет также число b\in\Bbb{R}, то c\leqslant b.

Наличие точных верхних граней у ограниченных сверху множеств эквивалентно аксиоме полноты и часто заменяет её в аксиоматике поля \Bbb{R}.

Любые два поля с отношением порядка, удовлетворяющим этим аксиомам, изоморфны, поэтому можно говорить, что существует единственное такое поле. (На самом деле, правильней говорить, что единственна структура полного упорядоченного поля, каждое поле, которое её имеет, служит моделью множества вещественных чисел, так как любые две модели изоморфны.)

[править] Пополнение рациональных чисел

Вещественные числа \Bbb{R} могут быть построены как пополнение множества рациональных чисел \Bbb{Q} по отношению к обычной метрике d(r,\;q)=|r-q|.

Более точно, рассмотрим все фундаментальные последовательности рациональных чисел {ri}. На таких последовательностях можно естественным образом ввести арифметические операции: {ri} + {qi} = {ri + qi} и \{r_i\} \cdot \{q_i\} = \{r_i \cdot q_i\}.

Две такие последовательности \{r_i\}\,\! и \{q_i\}\,\! считаются эквивалентными (\{r_i\} \sim \{q_i\}), если |r_i-q_i|\to 0 при i\to \infty.

Множество вещественных чисел можно определить как классы эквивалентности этих последовательностей.

[править] Дедекиндовы сечения

См. основную статью Дедекиндово сечение.

Дедекиндово сечение — это разбиение множества рациональных чисел \mathbb{Q} на два подмножества A и B такие, что:

  1. a\leqslant b для любых a\in A и b\in B;
  2. B не имеет минимального элемента.

Множество вещественных чисел определяется как множество дедекиндовых сечений. На них возможно продолжить операции сложения и умножения.

Например, вещественному числу \sqrt 2 соответствует дедекиндово сечение, определяемое A=\{x\in\mathbb Q\mid x<0 или x^2\leqslant2\} и B=\{x\in\mathbb Q\mid x>0 и x2 > 2}. Интуитивно, можно представить себе, что для того чтобы определить \sqrt 2 мы рассекли множество на две части: все числа, что левее \sqrt 2 и все числа, что правее \sqrt 2; соотвеетственно, \sqrt 2 равно точной нижней грани множества B.

[править] Бесконечные десятичные дроби

Такое задание, как правило, практикуется в школьной программе и во многом похоже на пополнение рациональных чисел.

Бесконечной десятичной дробью (со знаком) называется последовательность вида \pm d_{-k} d_{-k+1}\ldots d_{0}, d_{1} d_{2}\ldots, где di являются десятичными цифрами, то есть 0\leqslant d_i< 10.

Две последовательности называются эквивалентными, если они либо совпадают, либо их различающиеся «хвосты» имеют вид d999\ldots и (d+1)000\ldots, где 0\leqslant d\leqslant8, либо если это «нулевые» последовательности (все di равны 0), отличающиеся только знаком.

Вещественные числа определяются как классы эквивалентности десятичных дробей. Операции на десятичных дробях определяются позиционно подобно операциям над целыми числами в позиционных системах счисления.

Значение десятичной дроби формально задается суммой ряда \pm\sum_{i=-k}^{\infty} d_i\cdot 10^{-i}.

[править] Сноски

  1. Традиционно, в Петербурге(СПбГУ) принято название вещественные, а в Москве(МГУ) — действительные

[править] Ссылки

  • Кириллов, А. А. Что такое число? // Выпуск 4-й серии «Современная математика для студентов». — М.: Физматлит, 1993.
  • Понтрягин, Л. С. Обобщения чисел // Серия «Математическая библиотечка». — М.: Наука, 1965.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -