Автомобильная шина
Материал из Википедии — свободной энциклопедии
- Эта статья об автомобильных пневматических шинах; для прочих значений, смотрите шина.
Автомобильная шина — один из наиболее важных элементов, представляющий собой упругую оболочку, расположенную на ободе колеса. Шина предназначена для поглощения незначительных колебаний, вызываемых несовершенством дорожного покрытия, реализации и восприятия сил, возникающих в пятне контакта и обеспечения высокого коэффициента сцепления.
Содержание |
[править] История
Первая в мире резиновая шина была сделана Робертом Уильямом Томсоном. В патенте № 10990, датированным 10 июня 1846 г., написано: «Суть моего изобретения состоит в применении эластичных опорных поверхностей вокруг ободьев колес экипажей с целью уменьшения силы, необходимой для того, чтобы тянуть экипажи, тем самым, облегчая движение и уменьшая шум, который они создают при движении». Патент Томсона написан на очень высоком уровне. В нем изложена конструкция изобретения, а также материалы, рекомендуемые для его изготовления. Шина накладывается на колесо с деревянными спицами, вставленными в деревянный обод, обитый металлическим обручем. Сама шина состояла из двух частей: камеры и наружного покрытия. Камера изготавливалась из нескольких слоев парусины, пропитанной и покрытой с обеих сторон натуральным каучуком или гуттаперчей в виде раствора. Наружное покрытие состояло из соединенных заклепками кусков кожи. Томсон оборудовал экипаж воздушными колесами и провел испытания, измеряя силу тяги экипажа. Испытания показали уменьшение силы тяги на 38 % на щебеночном покрытии и на 68 % на покрытии из дробленой гальки. Особо отмечались бесшумность, удобство езды и легкий ход кареты на новых колесах. Результаты испытаний были опубликованы в журнале «Mechanics Маgazin» 27 марта 1849 г. вместе с рисунком экипажа. Можно было констатировать, что появилось крупное изобретение: продуманное до конструктивного воплощения, доказанное проведенными испытаниями, готовое к совершенствованию. К сожалению, на том дело и закончилось. Не нашлось никого, кто бы занялся этой идеей и довел ее до массового производства с приемлемой стоимостью. После смерти Томсона в 1873 г. «воздушное колесо» было забыто, хотя образцы этого изделия сохранились.
В 1888 г. идея пневматической шины возникла вновь. Новым изобретателем был шотландец Джон Данлоп, чье имя известно в мире как автора пневматической шины. Дж. Б. Данлоп придумал в 1887 г. надеть на колесо трехколесного велосипеда своего 10-летнего сына широкие обручи, сделанные из шланга для поливки сада, и надуть их воздухом. 23 июля 1888 г. Дж. Б. Данлопу был выдан патент № 10607 на изобретение, а приоритет на применение «пневматического обруча» для транспортных средств подтверждал следующий патент от 31 августа того же года. Камера из резины крепилась на обод металлического колеса со спицами обматыванием ее вместе с ободом прорезиненной парусиной, образующей каркас шины, в промежутках между спицами. Преимущества пневматической шины были оценены достаточно быстро. Уже в июне 1889 г. на стадионе в Белфасте Уильям Хьюм выступил в гонках на велосипеде с пневматическими шинами. И хотя Хьюма описывали как среднего гонщика, он выиграл все три заезда, в которых участвовал. Коммерческое развитие изобретения началось с образования маленькой компании в Дублине и конце 1889 г. под названием «Пневматическая шина и агентство Бута по продаже велосипедов». В настоящее время «Данлоп» — одна из крупнейших фирм в мире по изготовлению шин.
В 1890 г. молодой инженер Чальд Кннгстн Уэлтч предложил отделять камеру от покрышки, вставлять в края покрышки проволочные кольца и сажать на обод, который впоследствии получил углубление к центру. Тогда же англичанин Бартлетт и француз Дидье изобрели вполне приемлемые способы монтажа и демонтажа шин. Всё это определило возможность применения пневматической шины на автомобиле. Первым, кто стал использовать пневматические шины на автомобилях, были французы Андре и Эдуард Мишлен, которые уже имели достаточный опыт в производстве велосипедных шин. Они объявили, что к гонке в 1895 г. Париж — Бордо у них будут готовы пневматические шины для автомобилей и сдержали свое обещание. Несмотря на многочисленные проколы, автомобиль преодолел расстояние в 1200 км и достиг среди девяти других финиша своим ходом. В Англии в 1896 г. шинами «Данлоп» был оснащен автомобиль Ланчестер. С установкой пневматических шин существенно улучшились плавность хода, проходимость автомобилей, хотя первые шины были не надежны и не приспособлены к быстрому монтажу. В дальнейшем основные изобретения в области пневматических шин были, прежде всего, связаны с повышением безотказности и долговечности их, а также с облегчением монтажа-демонтажа. Потребовалось много лет постепенного совершенствования конструкции пневматической шины и способа ее изготовления, прежде чем она окончательно вытеснила литую резиновую. Стали применяться все более надежные и долговечные материалы, появился в шинах корд — особо прочный слой из упругих текстильных нитей. В первой четверти текущего столетия все чаще стали использовать конструкции быстросъемных креплений колес к ступицам на нескольких болтах, что позволило заменять шины вместе с колесом в течение нескольких минут. Все эти усовершенствования привели к повсеместному применению пневматических шин на автомобилях и бурному развитию шинной промышленности.
[править] Конструкция
Основными материалами для производства шин являются резина, которая обычно изготавливается из натурального или искусственного каучука и ткань — корд (может быть выполнен в виде металлических, либо нейлоновых нитей).
Шина состоит из: каркаса, слоев брекера, протектора, борта и боковой части.
Каркас состоит из прорезиненных нитей корда. В зависимости от расположения нитей корда в каркасе различают шины:
- радиальные
- диагональные
В радиальных шинах нити корда расположены вдоль радиуса колеса(как на схеме, позиция № 3). В диагональных шинах нити корда расположены под углом к радиусу колеса, нити соседних слоев перекрещиваются. Радиальные шины конструктивно более жесткие, вследствие чего обладают большим ресурсом, обладают стабильностью формы пятна контакта, меньшим сопротивлением качению, меньшим расходом топлива. В связи с этим, в настоящее время, радиальные шины для легковых автомобилей практически полностью вытеснили диагональные.
Брекер находится между каркасом и протектором. Предназначен для предохранения каркаса от разрушения. Состоит из нескольких слоев корда (обычно металлокорд).
Протектор необходим для реализации коэффициента сцепления шин с дорогой, а также для предохранения каркаса от повреждений. Протектор обладает определенным рисунком, который, в зависимости от назначения шины различается. Но, всеже, главная задача протектора шины — обеспечить надежный контакт колеса с дорогой в неблагоприятных условиях, таких как дождь, грязь, снег и т.д, путем их удаления из пятна контакта по точно спроектированным канавкам и желобкам рисунка. Но эффективно удалять воду из пятна контакта протектор в силах лишь до определенной скорости, выше которой жидкость физически не сможет полностью удаляться из пятна контакта, и автомобиль потеряет сцепление с дорожным покрытием, а следовательно и управление. Этот эффект носит название аквапланирование. На сухих же дорогах протектор снижает коэффициент сцепления из-за меньшей площади пятна контакта, по сравнению с резиной без протектора (slick tire). Именно поэтому на гоночных автомобилях в сухую погоду используются шины с гладким протектором, либо без протектора. Во многих странах существуют законы, регулирующие минимальную высоту протектора на дорожных транспортных средствах, и многие дорожные шины имеют встроенные индикаторы износа.
Борт позволяет покрышке герметично садиться на обод колеса. Для этого он имеет бортовые кольца и изнутри покрыт слоем вязкой воздухонепроницаемой (для бескамерных шин) резиной.
Боковая часть предохраняет шину от боковых повреждений.
Шипы противоскольжения. В целях повышения безопасности движения автомобиля в условиях гололеда и обледенелого снега применяют металлические шипы противоскольжения. Езда на шипованных шинах имеет заметные особенности. На ходу автомобиль делается заметно более шумным, ухудшается его топливная экономичность. В снежно-грязевой каше или в глубоком рыхлом снегу эффективность шипов невелика, а на твердом сухом или влажном асфальте шипованные шины даже проигрывают «обычным»: из-за снижения площади пятна контакта шины с дорогой, тормозной путь автомобиля увеличивается на 5-10%. Хотя 70-процентное сокращение тормозного пути на льду - их несомненное преимущество.
Бескамерные(tubeless) шины наиболее распространены благодаря своей надежности, меньшей массе и удобству эксплуатации.
[править] Маркировка
[править] Размерность
205/55 R16 91v
-
- 205 — ширина профиля, мм
- 55 — отношение высоты профиля к ширине, %
- R — шина имеет каркас радиального типа (если буквы нет — шина диагонального типа).
- 16 — посадочный диаметр шины (соответствует диаметру обода диска), дюйм
- 91 — индекс нагрузки (на некоторых моделях в дополнение к этому может быть указана нагрузка в кг — Max load)
- V — индекс скорости (определяется по таблице)
Индекс скорости | Допустимая скорость, км/ч |
---|---|
A1 | |
A2 | 10 |
A3 | 15 |
A4 | 20 |
A5 | 25 |
A6 | 30 |
A7 | 35 |
A8 | 40 |
B | 50 |
C | 60 |
D | 65 |
E | 70 |
F | 80 |
G | 90 |
J | 100 |
K | 110 |
L | 120 |
M | 130 |
N | 140 |
P | 150 |
Q | 160 |
R | 170 |
S | 180 |
T | 190 |
U | 200 |
H | 210 |
V | 240 |
W | 270 |
Y | 300 |
ZR | более 240 |
Индекс нагрузке | Допустимая нагрузка, кг | Индекс нагрузке | Допустимая нагрузка, кг |
---|---|---|---|
0 | 45 | 100 | 800 |
1 | 46,2 | 101 | 825 |
2 | 47,5 | 102 | 850 |
3 | 48,7 | 103 | 875 |
4 | 50 | 104 | 900 |
5 | 51,5 | 105 | 925 |
6 | 53 | 106 | 950 |
7 | 54,5 | 107 | 975 |
8 | 56 | 108 | 1000 |
9 | 58 | 109 | 1030 |
10 | 60 | 110 | 1060 |
11 | 61,5 | 111 | 1090 |
12 | 63 | 112 | 1120 |
13 | 65 | 113 | 1150 |
14 | 67 | 114 | 1180 |
15 | 69 | 115 | 1215 |
16 | 71 | 116 | 1250 |
17 | 73 | 117 | 1285 |
18 | 75 | 118 | 1320 |
19 | 77,5 | 119 | 1360 |
20 | 80 | 120 | 1400 |
21 | 82,5 | 121 | 1450 |
22 | 85 | 122 | 1500 |
23 | 87,5 | 123 | 1550 |
24 | 90 | 124 | 1600 |
25 | 92,5 | 125 | 1650 |
26 | 95 | 126 | 1700 |
27 | 97 | 127 | 1750 |
28 | 100 | 128 | 1800 |
29 | 103 | 129 | 1850 |
30 | 106 | 130 | 1900 |
31 | 109 | 131 | 1950 |
32 | 112 | 132 | 2000 |
33 | 115 | 133 | 2060 |
34 | 118 | 134 | 2120 |
35 | 121 | 135 | 2180 |
36 | 125 | 136 | 2240 |
37 | 128 | 137 | 2300 |
38 | 132 | 138 | 2360 |
39 | 136 | 139 | 2430 |
40 | 140 | 140 | 2500 |
41 | 145 | 141 | 2575 |
42 | 150 | 142 | 2650 |
43 | 155 | 143 | 2725 |
44 | 160 | 144 | 2800 |
45 | 165 | 145 | 2900 |
46 | 170 | 146 | 3000 |
47 | 175 | 147 | 3075 |
48 | 180 | 148 | 3150 |
49 | 185 | 149 | 3250 |
50 | 190 | 150 | 3350 |
51 | 195 | 151 | 3450 |
52 | 200 | 152 | 3550 |
53 | 206 | 153 | 3650 |
54 | 212 | 154 | 3750 |
55 | 218 | 155 | 3875 |
56 | 224 | 156 | 4000 |
57 | 230 | 157 | 4125 |
58 | 236 | 158 | 4250 |
59 | 243 | 159 | 4375 |
60 | 250 | 160 | 4500 |
61 | 257 | 161 | 4625 |
62 | 265 | 162 | 4750 |
63 | 272 | 163 | 4875 |
64 | 280 | 164 | 5000 |
65 | 290 | 165 | 5150 |
66 | 300 | 166 | 5300 |
67 | 307 | 167 | 5450 |
68 | 315 | 168 | 5600 |
69 | 325 | 169 | 5800 |
70 | 335 | 170 | 6000 |
71 | 345 | 171 | 6150 |
72 | 355 | 172 | 6300 |
73 | 365 | 173 | 6500 |
74 | 375 | 174 | 6700 |
75 | 387 | 175 | 6900 |
76 | 400 | 176 | 7100 |
77 | 412 | 177 | 7300 |
78 | 425 | 178 | 7500 |
79 | 437 | 179 | 7750 |
80 | 450 | 180 | 8000 |
81 | 462 | 181 | 8250 |
82 | 475 | 182 | 8500 |
83 | 487 | 183 | 8750 |
84 | 500 | 184 | 9000 |
85 | 515 | 185 | 9250 |
86 | 530 | 186 | 9500 |
87 | 545 | 187 | 9750 |
88 | 560 | 188 | 10000 |
89 | 580 | 189 | 10300 |
90 | 600 | 190 | 10600 |
91 | 615 | 191 | 10900 |
92 | 630 | 192 | 11200 |
93 | 650 | 193 | 11500 |
94 | 670 | 194 | 11800 |
95 | 690 | 195 | 12150 |
96 | 710 | 196 | 12500 |
97 | 730 | 197 | 12850 |
98 | 750 | 198 | 13200 |
99 | 775 | 199 | 13600 |
- Максимально допустимое давление (MAX PRESSURE).
Давление воздуха в шинах существенно влияет на поведение автомобиля на дороге, безопасность на высоких скоростях, а также на износ протектора. Давление в шинах обязательно должно быть приведено в норму до регулировки углов установки колёс.
[править] Назначение для определенных условий эксплуатации
- англ. Winter — зимние шины.
- англ. Aqua, Rain и т. д. — высокоэффективны на мокрой дороге.
- англ. AS (all season) — всесезонные шины.
- англ. M+S (Mud+Snow) — буквально — «грязь+снег» — пригодны для движения по грязи и снегу.
[править] Процесс изготовления шин
Изготовление шин включает в себя четыре различных этапа: изготовление смесей, изготовление компонентов, сборка, вулканизация.
I. Производство шины начинается с приготовления резиновых смесей. Рецептура зависит от назначения деталей шины и может включать в себя до 10 химикатов, начиная от серы и углерода и заканчивая каучуком.
II. На следующем этапе создается протекторная заготовка для шины. В результате шприцевания на червячной машине получается прорезиненная лента, которая после охлаждения водой разрезается на заготовки по размеру шины.
Скелет шины – каркас и брекер - изготавливаются из слоев обрезиненного текстиля или высокопрочного металлокорда. Прорезиненное полотно раскраивается под определенным углом на полосы различной ширины в зависимости от размера шины.
Важным элементом шины является борт - это нерастяжимая, жесткая часть шины, с помощью которой последняя крепится на ободе колеса. Основная часть борта – крыло, которое изготавливается из множества витков обрезиненной бортовой проволоки.
III. На сборочных станках все детали шины соединяются в единое целое. На сборочный барабан последовательно накладываются слои каркаса, борт, по центру каркаса протектор с боковинами.
IV. После сборки шину ожидает процесс вулканизации. Собранная шина помещается в пресс-форму вулканизатора. Внутрь шины под высоким давлением подается пар или подогретая вода. Обогревается и наружная поверхность пресс-формы. Под давлением по боковинам и протектору прорисовывается рельефный рисунок. Происходит химическая реакция, которая придает ей эластичность и прочность.
[править] Сопротивление качению
При движении колеса часть энергии шина тратит на деформацию вследствие перемещения пятна контакта. Эта энергия вычитается из сообщенной телу кинетической энергии, и поэтому колесо тормозит. На сопротивление качению уходит от 25%-30% энергии топлива.
Сопротивление качению зависит от многих конструктивных и эксплуатационных факторов: 1) Конструкция шины. 2) Давление воздуха в шине. 3) Температура. 4) Нагрузка. 5) Скорость движения автомобиля. 6) Состояние дорожной поверхности.
В наибольшей степени сопротивление качению зависит от таких конструктивных параметров шин, как число слоев и расположение нитей корда, толщина и состояние протектора. Уменьшение числа слоев корда, толщины протектора, применение синтетических материалов с малыми гистерезисными потерями способствуют снижению сопротивления качению. С увеличением размера шины (диаметра) при прочих равных условиях сопротивление качению также снижается.
Велико влияние эксплуатационных факторов на величину момента сопротивления качению. Так, с повышением давления воздуха в шине и ее температуры сопротивление качению уменьшается. Наименьшее сопротивление качению имеет место при нагрузке, близкой к номинальной. С увеличением степени изношенности шины оно уменьшается.
На дорогах с твердым покрытием сопротивление качению во многом зависит от размеров и характера неровностей дороги, обусловливающих повышенное деформирование шин и подвески и, следовательно, дополнительные затраты энергии. При движении по мягким или грязным опорным поверхностям затрачивается дополнительная работа на деформирование грунта или выдавливание грязи и влаги, находящихся в зоне контакта колеса с дорогой.
Исследования показывают, что при движении автомобиля со скоростью до 50 км/ч сопротивление качению можно считать постоянным. Интенсивное увеличение сопротивления качению наблюдается при скорости свыше 100 км/ч. Объясняется это увеличением затрат энергии при ударах и колебательных процессах, происходящих в шине при высоких скоростях движения.
[править] Химический состав резиновой смеси
Над процессом создания шины работают шинные химики и конструкторы, от которых зависят секреты шинной рецептуры. Их искусство заключается в правильном выборе, дозировке и распределении шинных компонентов, в особенности для смеси протектора. На помощь им приходят профессиональный опыт и не в меньшей степени компьютеры. Хотя состав резиновой смеси у любого солидного производителя шин - тайна за семью печатями, достаточно хорошо известны около 20 основных составляющих. Весь секрет состоит в их грамотной комбинации с учетом предназначения самой шины.
Основные составляющие резиновой смеси:
1) Каучук. Хотя шинный коктейль необычайно сложен по своему составу, основу его все же образуют различные каучуковые смеси. Натуральный каучук, состоящий из высушенного сока южноамериканского каучукового дерева, долгое время доминировал во всех смесях, различаясь при этом лишь по уровню качества. Производимый из нефти искусственный каучук был изобретен немецкими химиками в 30-е гг. и современная скоростная шина без него просто немыслима. Оба вида каучука применяются при производстве шин и сегодня, но доля искусственного каучука при этом доминирует, ввиду его особых свойств, отсутствующих у каучуков натуральных.
2) Сажа. Добрая треть резиновой смеси состоит из промышленной сажи, наполнителя, предлагаемого в различных вариантах и придающего шине ее специфичный цвет. Сажа обеспечивает в процессе вулканизации хорошее молекулярное соединение, что придает покрышке особую прочность и износостойкость.
3) Кремниевая кислота. За последнее десятилетие широкое применение в качестве наполнителя для резиновых смесей нашла достаточно дорогая осажденная кремниевая кислота, и некоторые шины имеют стопроцентное кремниевое содержание.
4) Масла и смолы. К важным составным частям смеси, но в меньшем объеме, относятся масла и смолы, обозначаемые как смягчители и служащие в качестве вспомогательных материалов. От достигнутой жесткости резиновой смеси во многом зависят ездовые свойства и износостойкость шины.
5) Сера. Сера способствует превращению пластичного каучука в эластичную резину посредством образования сетки длинных молекулярных цепей.
6) Вулканизационные активаторы, такие как цинк и стеариновые кислоты, а также ускорители следят за образованием полимерной сетки во время вулканизации в горячей форме (под давлением и при нагреве). Ввод этих химикалий сокращает процесс вулканизации до минут, в то время как раньше он длился часами.
7) Экологические наполнители. Новая и еще не распространенная технология предполагает собой применять в смеси протектора крахмал из кукурузы (в перспективе картофеля и сои). За счет значительно уменьшенного сопротивления качения шина на основе новой технологии выделяет в атмосферу почти вдвое меньше соединений углекислого газа по сравнению с обычными шинами.
[править] Тенденции в шинной индустрии
В последнее время наметились всё бо́льшие тенденции, направленные на уменьшение высоты профиля шины. Снижение отношения высоты профиля к ширине профиля, при неизменной ширине шины, позволяет ставить колесные диски большего диаметра без изменения общей высоты колеса. Это делает возможным установку тормозных механизмов большего диаметра, что необходимо в свете роста мощностей моторов и скоростей авто. Также уменьшается деформация боковых стенок шины — это улучшает реакции шины на действия рулем, и снижает нагрев шины, но, с другой стороны, ухудшает комфортабельность движения, а форма пятна контакта становится короче и шире.
Снижение сопротивления качению шины также является одним из приоритетнейших направлений в развитии шинной промышленности. Снижение сопротивления позволяет повышать экономичность движения автомобиля, за счет более совершенных материалов, применяемых в протекторе, которые поглощают меньше энергии при растяжении и сжатии. Больших успехов достигла компания Michelin, разработанные ею опытные образцы покрышек Proxima позволяют снизить вес на 20 %, а сопротивление качению на 25 % — до 6.5 кг/т по сравнению с покрышками серии Energy, обладающими сопротивлением в 9 кг/т. Для справки — шины выпущенные в 1897 году имели сопротивление качению в 25 кг/т.
Возможность нести вес автомобиля в случае потери воздуха опреленное количество километров, без вреда для колесных дисков - важное достижение шинников за последнее время. Такие шины обычно носят название «run flat». К реализации идеи создания шины не боящейся прокола компании подошли по-разному. Например Goodyear используют в своих шинах EMT (Extended Mobility Tire) специальные вставки в плечевой зоне, которые не позволяют шинам полностью складываться. Michelin в шинах PAX используют нестандартный обод, с жестким кольцом, на которое в случае потери давления и опирается автомобиль.
[править] Производители
[править] Мир
- Avon Tyres
- Bridgestone
- Continental
- Barum
- Cheng-shin/MAXXIS
- Cooper Tire & Rubber Company
- Dunlop Tyres
- Eurotire
- Firestone
- Fulda
- GITI TIRE
- Goodrich Corporation
- Goodyear Tire and Rubber Company
- Hankook Tire
- JKtyre
- Kelly Springfield Tire and Rubber Company
- Kumho
- Michelin
- Uniroyal
- Metzeler
- Madras_Rubber_Factory MRF Tyres
- Nokian Tyres
- Pirelli
- Sumitomo Rubber Industries
- Toyo Tire & Rubber Company
- Yokohama Rubber Company
- Amtel-Vredestein
[править] Бывший СССР
- Белшина
- Росава
- Днепрошина
[править] Россия
- СИБУР - Русские шины
- Ярославский шинный завод
- Омскшина (Омский шинный завод)
- Матадор-Омскшина (Совмествое предприятие "СИБУР - Русские шины" и "Matador")
- Волтайр (Волжский шинный завод)
- Уралшина(Уральский шинный завод)
- Барнаульский шинный завод
- Белгородский шинный завод
- Красноярский шинный завод
- Московский шинный завод
- Нижнекамский шинный завод
[править] Ссылки
- Список производителей шин
- Зависимость расхода топлива от положения колес
- Последние новости из мира шин. Описание всех марок шин
- Шины и диски, отзывы о шинах, каталоги и цены в интернет-магазинах
- Ищем лучшие шины - шиноманьяки
- Шины, диски и их продавцы
- Интернет газета о шинах и дисках
[править] Литература
- "Основы конструкции автомобиля", Иванов А.М., Солнцев А.Н., Гаевский В.В. и др. Учебник для ВУЗов. — М.: ООО «За рулем», 2005. ISBN 5-9698-0003-1
- "Modern car technology : Jeff Daniels looks under the skin of today's cars", Jeff Daniels - Sparkford, UK : Haynes, 2001. ISBN 1-85960-811-6
Эту статью следует викифицировать.
Пожалуйста, оформите её согласно правилам оформления статей.
|