Markovs ulikhet
Fra Wikipedia, den frie encyklopedi
I sannsynlighetsteori gir Markovs ulikhet en øvre grense for sannsynligheten av at en ikke-negativ stokastisk variabel er større enn en gitt positiv verdi. Ulikheten er oppkalt etter den russiske matematikeren Andrej Andrejevitsj Markov.
[rediger] Ulikheten
Hvis X er en stokastisk variabel og a > 0, så er
[rediger] Bevis
Hvis A er en hendelse, la IA være indikatorvariabelen til A. Det vil si at IA = 1 hvis A skjer, og 0 ellers. Da er
Derfor er
Merk at den venstre siden av denne ulikheten er det samme som
Dermed har vi at
og siden a > 0, kan vi dividere begge sider med a.
[rediger] Eksempler
- Markovs ulikhet brukes til å bevise Tsjebysjevs ulikhet.
- Hvis X er en ikke-negativ stokastisk variabel med bare heltallige utfall, noe som ofte forekommer i kombinatorikk, så følger det av Markovs ulikhet at P(X > 0) ≤ E(X), ved å sette a =1.