積分方程式
出典: フリー百科事典『ウィキペディア(Wikipedia)』
積分方程式(せきぶんほうていしき、Integral equation)は、数学において、未知の関数が積分の中に現れるような方程式である。積分方程式と微分方程式には密接な関係があり、そのどちらでも問題を定式化することができる場合もある。
積分方程式は次の3種類の分類方法がある。この分類によれば、8種類の積分方程式が存在する。
- 積分の上限および下限が固定の場合、フレドホルム積分方程式と呼ばれる。また、積分の上限・下限の片方が変数の場合、ヴォルテラ積分方程式と呼ばれる。
- 未知の関数が積分の中にのみ現れる場合、第一種積分方程式と呼ばれ、未知の関数が積分の中にも外にも現れる場合、第二種積分方程式と呼ばれる。
- 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。
4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし φ は未知の関数、f は既知の関数、K は既知の2変数関数で積分核と呼ばれる。λ は未知の係数で、線型代数学における固有値と同じ役割をする。
第一種フレドホルム積分方程式:
第二種フレドホルム積分方程式:
第一種ヴォルテラ積分方程式:
第二種ヴォルテラ積分方程式:
積分方程式は多くの応用において重要である。積分方程式に出会う問題としては、弦や膜、棒における放射エネルギー変換や振動などが挙げられる。振動問題は微分方程式によって解かれることもある。
[編集] 参考文献
- 日本数学会 『岩波数学辞典(第3版)』 岩波書店、1985年。ISBN 4000800167
- 吉田耕作、積分方程式論、岩波全書、1950。ISBN 4000212834