See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diffeomorfismo - Wikipedia

Diffeomorfismo

Da Wikipedia, l'enciclopedia libera.

Un diffeomorfismo è una funzione tra due varietà differenziabili con la proprietà di essere differenziabile, invertibile e di avere l'inversa differenziabile.

In realtà, nel definire una varietà differenziabile, si usa il concetto di diffeomorfismo, anche se ristretto al caso di regioni di spazi euclidei. Per questo motivo è necessario, ai fini del rigore formale, avere a disposizione una definizione di diffeomorfismo tra spazi euclidei indipendente dal concetto di varietà differenziabile; dunque:

Una funzione tra due regioni (insiemi aperti e connessi) di spazi euclidei f: U → V, U regione di \mathbb{R}d, V regione di \mathbb{R}m, è un diffeomorfismo se è differenziabile, invertibile e la sua inversa è anch'essa differenziabile.

In una variabile, un diffeomorfismo è una funzione f con differenziale d_{f}\neq 0 quindi invertibile con inversa f - 1 anch'essa differenziabile, ossia una funzione invertibile che penda sempre e con inversa sempre pendente.

Chiaramente, una volta definite le varietà differenziabili la seconda definizione diventa un caso particolare della prima.

Due varietà tra le quali sia possibile definire un diffeomorfismo si dicono diffeomorfe; di fatto i diffeomorfismi giocano in geometria differenziale lo stesso ruolo degli omeomorfismi in topologia.

È abbastanza facile trovare un omeomorfismo tra varietà differenziabili che non sia un diffeomorfismo, meno facile è trovare varietà omeomorfe che non siano anche diffeomorfe. È possibile dimostrare che per dimensioni minori o uguali a 3, tutte le varietà omeomorfe sono anche diffeomorfe; per dimensioni superiori a 3 è possibile trovare dei controesempi. Il primo controesempio di questo tipo fu costruito da John Milnor in dimensione 7: la sfera di Milnor.

[modifica] Voci correlate



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -