משלים (מתמטיקה)
מתוך ויקיפדיה, האנציקלופדיה החופשית
בתורת הקבוצות, משלים של קבוצה G הוא קבוצה אחרת, אשר מכילה את כל האיברים שאינם נמצאים ב-G. זאת ביחס לקבוצה U כלשהי שהיא "הקבוצה האוניברסלית" - קבוצה שבהקשר הנוכחי של הדיון, כל קבוצה שעליה נדבר היא תת קבוצה של U.
על-פי הגדרה זו, האיחוד של קבוצת G והמשלים של G הוא הקבוצה U, ואילו החיתוך ביניהן הוא קבוצה ריקה.
תוכן עניינים |
[עריכה] הגדרה פורמלית
תהא קבוצה, ותהא קבוצה חלקית שלה. אז המשלים של ב יוגדר כך: . סימון מקובל נוסף למשלים הוא .
[עריכה] דוגמה
תהא קבוצה N המכילה את כל המספרים השלמים והחיוביים.
תהא קבוצה A המכילה רק את המספרים הזוגיים החיוביים (2,4,6...)
הקבוצה B תהיה המשלים של A ביחס ל-N אם היא תכיל רק מספרים המוכלים ב-N אך לא ב-A, כלומר את המספרים החיוביים האי זוגיים (1,3,5...)
ניתן לראות כי החיתוך של A עם B נותן קבוצה ריקה, בעוד שאיחודן יוצר את הקבוצה N.
[עריכה] תכונות בסיסיות
, כלומר המשלים של המשלים של קבוצה הינו הקבוצה עצמה.
, כלומר, חיתוך קבוצה והמשלים שלה שווה לקבוצה הריקה.
, כלומר, איחוד קבוצה והמשלים שלה שווה לקבוצה האוניברסלית.
, כלומר המשלים של הקבוצה האוניברסלית הוא הקבוצה הריקה.
, כלומר המשלים של הקבוצה הריקה הינו הקבוצה האוניברסלית.
[עריכה] כללי דה מורגן
כללי דה מורגן קושרים את הפעולות "איחוד", "חיתוך", "משלים". בכתיב פורמלי הם מוצגים כך:
נושאים בתורת הקבוצות |
---|
תורת הקבוצות הנאיבית | תורת הקבוצות האקסיומטית | קבוצה | הקבוצה הריקה | איחוד | חיתוך | משלים | הפרש סימטרי | קבוצת החזקה | מכפלה קרטזית | יחס | יחס שקילות | פונקציה | עוצמה | קבוצה בת מנייה | האלכסון של קנטור | משפט קנטור שרדר ברנשטיין | השערת הרצף | הפרדוקס של ראסל | סדר חלקי | מספר סודר | הלמה של צורן | אקסיומת הבחירה |