ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
משלים (מתמטיקה) – ויקיפדיה

משלים (מתמטיקה)

מתוך ויקיפדיה, האנציקלופדיה החופשית

בתורת הקבוצות, משלים של קבוצה G הוא קבוצה אחרת, אשר מכילה את כל האיברים שאינם נמצאים ב-G. זאת ביחס לקבוצה U כלשהי שהיא "הקבוצה האוניברסלית" - קבוצה שבהקשר הנוכחי של הדיון, כל קבוצה שעליה נדבר היא תת קבוצה של U.

על-פי הגדרה זו, האיחוד של קבוצת G והמשלים של G הוא הקבוצה U, ואילו החיתוך ביניהן הוא קבוצה ריקה.

תוכן עניינים

[עריכה] הגדרה פורמלית

דיאגרמת ון של המשלים של G בקבוצת U הוא השטח המסומן בצבע אפור.
דיאגרמת ון של המשלים של G בקבוצת U הוא השטח המסומן בצבע אפור.

תהא \!\, U קבוצה, ותהא \!\, G\subseteq U קבוצה חלקית שלה. אז המשלים של \!\, G ב\!\, U יוגדר כך: \!\, G^C=U-G. סימון מקובל נוסף למשלים הוא \!\, G'.

[עריכה] דוגמה

תהא קבוצה N המכילה את כל המספרים השלמים והחיוביים.
תהא קבוצה A המכילה רק את המספרים הזוגיים החיוביים (2,4,6...)
הקבוצה B תהיה המשלים של A ביחס ל-N אם היא תכיל רק מספרים המוכלים ב-N אך לא ב-A, כלומר את המספרים החיוביים האי זוגיים (1,3,5...)

ניתן לראות כי החיתוך של A עם B נותן קבוצה ריקה, בעוד שאיחודן יוצר את הקבוצה N.

[עריכה] תכונות בסיסיות

\!\, A''=A, כלומר המשלים של המשלים של קבוצה הינו הקבוצה עצמה.

\!\, A \cap A'=\emptyset, כלומר, חיתוך קבוצה והמשלים שלה שווה לקבוצה הריקה.

\!\, A \cup A'=U, כלומר, איחוד קבוצה והמשלים שלה שווה לקבוצה האוניברסלית.

\!\, U'=\emptyset, כלומר המשלים של הקבוצה האוניברסלית הוא הקבוצה הריקה.

\!\, \emptyset'=U, כלומר המשלים של הקבוצה הריקה הינו הקבוצה האוניברסלית.

[עריכה] כללי דה מורגן

כללי דה מורגן קושרים את הפעולות "איחוד", "חיתוך", "משלים". בכתיב פורמלי הם מוצגים כך:

(A\cap B)'=A'\cup B'
(A\cup B)'=A'\cap B'
נושאים בתורת הקבוצות

תורת הקבוצות הנאיבית | תורת הקבוצות האקסיומטית | קבוצה | הקבוצה הריקה | איחוד | חיתוך | משלים | הפרש סימטרי | קבוצת החזקה | מכפלה קרטזית | יחס | יחס שקילות | פונקציה | עוצמה | קבוצה בת מנייה | האלכסון של קנטור | משפט קנטור שרדר ברנשטיין | השערת הרצף | הפרדוקס של ראסל | סדר חלקי | מספר סודר | הלמה של צורן | אקסיומת הבחירה


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -