See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Nombre triangulaire - Wikipédia

Nombre triangulaire

Un article de Wikipédia, l'encyclopédie libre.

Un nombre triangulaire est un nombre qui peut être représenté par un triangle équilatéral. Les premiers termes de la suite des nombres triangulaires (A000217 dans l'encyclopédie électronique des suites entières) sont:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
1 Image:Triangular number 1.png
3 Image:Triangular number 3.png
6 Image:Triangular number 6.png
10 Image:Triangular number 10.png
15 Image:Triangular number 15.png

Puisque chaque ligne est d'une unité plus longue que la ligne précédente, nous pouvons remarquer qu'un nombre triangulaire est la somme de nombres entiers consécutifs.

Le nombre triangulaire de rang n est égal à

\frac{n(n + 1)}{2}\, ou
1+2+3+\ldots+(n-1)+n.

On reconnaît le coefficient binomial C_{n+1}^2.

Il est possible également de démontrer que pour tout simplexe de dimension n ayant des côtés de longueur x, le nombre de points qui composent le simplexe est égal à

 \frac {x(x+1)\cdots(x+(n-1))} {n!} .

Par exemple, un tétraèdre ayant des côtés de longueur 2 comprend un nombre total de

\frac{2(2 + 1)(2 + 2)}{6}=4

points. Les quatre points formant cette configuration sont les sommets du tétraèdre. Remarquons qu'un tétraèdre peut être créé en considérant un nombre et en formant le triangle de rang ce nombre, puis en lui adjoignant tous les triangles de rang inférieur à celui-ci. Ainsi un tétraèdre de rang 2 peut se construire à partir d'un triangle de rang 2 contenant 3 points et d'un triangle de rang ayant 1 point. Ce tétraèdre comprendra au total 4 points.

L'un des nombres triangulaires les plus célèbres est 666 obtenu pour n = 36, également connu sous le nom de nombre de la bête.

Tout nombre parfait est triangulaire.

La somme de deux nombres triangulaires consécutifs est un nombre carré. Ceci peut être démontré de la façon suivante:

la somme des nombres triangulaires de rang n et n-1 est égale à

\frac{n(n+1)}{2}+\frac{n(n-1)}{2}

qui se développe en

\frac{n^2}{2}+\frac{n}{2}+\frac{n^2}{2}-\frac{n}{2}

et se simplifie en n2.

Cependant, il est possible de retrouver schématiquement ce résultat :

16 Image:Square number 16 as sum of two triangular numbers.svg
25 Image:Square number 25 as sum of two triangular numbers.svg

Dans chacun des exemples ci-dessus, un carré est formé de deux triangles juxtaposés.

En outre, le carré d'un nombre triangulaire de rang n est égale à la somme des cubes des entiers naturels de 1 à n.

En base 10, le résidu d'un nombre triangulaire est toujours égal à 1, 3, 6 ou 9. Par conséquent chaque nombre triangulaire est ou bien divisible par trois ou bien a un reste égal à 1 une fois divisé par neuf.

6=3 \times 2, 10=9+1, 12=3 \times 4, 15=3 \times 5, 21=3 \times 7, 28=9 \times 3+1,

Les nombres triangulaires vérifient toutes sortes de relations avec d'autres nombres figurés, y compris avec des nombres figurés centrés. Toutes les fois qu'un nombre triangulaire est divisible par 3, le tiers de ce nombre est un nombre pentagonal. Tout autre nombre triangulaire est un nombre hexagonal. Un nombre hexagonal centré est égal à un nombre triangulaire multiplié par 6 plus 1. Un nombre carré centré est un nombre triangulaire multiplié par 4, plus 1.

[modifier] Voyez également


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -